Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Mathematical modelling reveals cellular dynamics within tumour spheroids.

Tytuł :
Mathematical modelling reveals cellular dynamics within tumour spheroids.
Autorzy :
Bull JA; Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
Mech F; Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Centre Munich, Germany.
Quaiser T; Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Centre Munich, Germany.
Waters SL; Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
Byrne HM; Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
Pokaż więcej
Źródło :
PLoS computational biology [PLoS Comput Biol] 2020 Aug 18; Vol. 16 (8), pp. e1007961. Date of Electronic Publication: 2020 Aug 18 (Print Publication: 2020).
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
English
Imprint Name(s) :
Original Publication: San Francisco, CA : Public Library of Science, [2005]-
MeSH Terms :
Models, Biological*
Spheroids, Cellular*/cytology
Spheroids, Cellular*/physiology
Tumor Cells, Cultured*/cytology
Tumor Cells, Cultured*/physiology
Animals ; Biomechanical Phenomena ; Cell Death/physiology ; Cell Hypoxia/physiology ; Cell Proliferation/physiology ; Computational Biology ; Humans
References :
Exp Cell Res. 1986 Oct;166(2):370-8. (PMID: 3743661)
Bull Math Biol. 2004 Sep;66(5):1039-91. (PMID: 15294418)
Int J Cancer. 2013 Aug 1;133(3):568-78. (PMID: 23364881)
Integr Biol (Camb). 2016 Jan;8(1):104-19. (PMID: 26686751)
PLoS Comput Biol. 2013;9(3):e1002970. (PMID: 23516352)
Bioinformatics. 2010 Oct 15;26(20):2641-2. (PMID: 20709692)
Mol Imaging. 2012 Nov-Dec;11(6):487-98. (PMID: 23084249)
J Clin Pathol. 2004 Oct;57(10):1009-14. (PMID: 15452150)
J R Soc Interface. 2018 Jan;15(138):. (PMID: 29343635)
Bull Math Biol. 2018 May;80(5):1207-1235. (PMID: 29488054)
PLoS Comput Biol. 2020 Mar 10;16(3):e1007635. (PMID: 32155140)
IMA J Math Appl Med Biol. 2001 Jun;18(2):131-58. (PMID: 11453466)
Eur Phys J E Soft Matter. 2019 Aug 29;42(8):112. (PMID: 31456065)
Sci Rep. 2019 Apr 29;9(1):6597. (PMID: 31036886)
Bull Math Biol. 1999 Jul;61(4):601-23. (PMID: 17883217)
Bull Exp Biol Med. 2016 Apr;160(6):857-60. (PMID: 27165074)
PLoS One. 2009 Oct 16;4(10):e7190. (PMID: 19834621)
J R Soc Interface. 2014 Jan 15;11(92):20131124. (PMID: 24430128)
Bioinformatics. 2014 Nov 1;30(21):3101-8. (PMID: 25064572)
Front Oncol. 2013 May 10;3:111. (PMID: 23717812)
J Theor Biol. 1997 Nov 7;189(1):63-80. (PMID: 9398504)
Front Genet. 2019 Sep 19;10:873. (PMID: 31592020)
J Theor Biol. 2003 Nov 21;225(2):257-74. (PMID: 14575659)
IMA J Math Appl Med Biol. 1998 Jun;15(2):165-85. (PMID: 9661282)
Exp Cell Res. 2003 Feb 1;283(1):1-16. (PMID: 12565815)
J R Soc Interface. 2018 Jan;15(138):. (PMID: 29367239)
Methods Cell Biol. 2012;110:325-66. (PMID: 22482955)
Phys Rev Lett. 2013 Mar 29;110(13):138103. (PMID: 23581378)
J Exp Med. 1973 Oct 1;138(4):745-53. (PMID: 4744009)
Cancer Res. 1987 Jun 15;47(12):3039-51. (PMID: 3555767)
FEBS Lett. 2007 Sep 18;581(23):4523-8. (PMID: 17765896)
Cell Prolif. 2001 Aug;34(4):253-66. (PMID: 11529883)
PLoS Comput Biol. 2019 Jul 16;15(7):e1007214. (PMID: 31310602)
PLoS One. 2010 May 26;5(5):e10641. (PMID: 20520818)
PLoS Comput Biol. 2015 Nov 23;11(11):e1004626. (PMID: 26599078)
PLoS Comput Biol. 2017 Feb 13;13(2):e1005387. (PMID: 28192427)
Br J Cancer. 1966 Mar;20(1):74-86. (PMID: 5327764)
J Theor Biol. 2018 Dec 7;458:133-147. (PMID: 30145131)
Nat Biotechnol. 1997 Aug;15(8):778-83. (PMID: 9255794)
Phys Rev Lett. 1992 Sep 28;69(13):2013-2016. (PMID: 10046374)
Bull Math Biol. 2007 Jul;69(5):1747-76. (PMID: 17333419)
Nat Rev Clin Oncol. 2018 Feb;15(2):81-94. (PMID: 29115304)
Science. 1988 Apr 8;240(4849):177-84. (PMID: 2451290)
Cancer. 1993 Mar 15;71(6):2013-9. (PMID: 8443753)
Phys Biol. 2005 Jul 12;2(3):133-47. (PMID: 16224119)
IMA J Math Appl Med Biol. 1997 Mar;14(1):39-69. (PMID: 9080687)
J Theor Biol. 2014 Sep 21;357:184-99. (PMID: 24810842)
Tissue Eng Part C Methods. 2016 Mar;22(3):221-49. (PMID: 26650970)
Bull Math Biol. 2001 Mar;63(2):231-57. (PMID: 11276525)
Neoplasia. 2015 Jan;17(1):1-15. (PMID: 25622895)
Bioinformatics. 2014 May 1;30(9):1331-2. (PMID: 24443380)
Exp Cell Res. 1982 Sep;141(1):201-9. (PMID: 7117414)
J Theor Biol. 2009 May 21;258(2):165-78. (PMID: 19248794)
Comput Math Methods Med. 2016;2016:7851789. (PMID: 28096895)
J Theor Biol. 2017 Feb 7;414:254-268. (PMID: 27890575)
PLoS Comput Biol. 2018 Feb 23;14(2):e1005991. (PMID: 29474446)
PLoS Comput Biol. 2016 Feb 11;12(2):e1004412. (PMID: 26866479)
IMA J Math Appl Med Biol. 1999 Jun;16(2):171-211. (PMID: 10399312)
J Theor Biol. 1976 Jan;56(1):229-42. (PMID: 1263527)
Bull Math Biol. 1993 May;55(3):655-74. (PMID: 8364422)
Bioinformatics. 2016 Apr 15;32(8):1256-8. (PMID: 26656933)
Grant Information :
C5255/A18085 United Kingdom CRUK_ Cancer Research UK
Entry Date(s) :
Date Created: 20200819 Date Completed: 20200910 Latest Revision: 20200910
Update Code :
20201023
PubMed Central ID :
PMC7455028
DOI :
10.1371/journal.pcbi.1007961
PMID :
32810174
Czasopismo naukowe
Tumour spheroids are widely used as an in vitro assay for characterising the dynamics and response to treatment of different cancer cell lines. Their popularity is largely due to the reproducible manner in which spheroids grow: the diffusion of nutrients and oxygen from the surrounding culture medium, and their consumption by tumour cells, causes proliferation to be localised at the spheroid boundary. As the spheroid grows, cells at the spheroid centre may become hypoxic and die, forming a necrotic core. The pressure created by the localisation of tumour cell proliferation and death generates an cellular flow of tumour cells from the spheroid rim towards its core. Experiments by Dorie et al. showed that this flow causes inert microspheres to infiltrate into tumour spheroids via advection from the spheroid surface, by adding microbeads to the surface of tumour spheroids and observing the distribution over time. We use an off-lattice hybrid agent-based model to re-assess these experiments and establish the extent to which the spatio-temporal data generated by microspheres can be used to infer kinetic parameters associated with the tumour spheroids that they infiltrate. Variation in these parameters, such as the rate of tumour cell proliferation or sensitivity to hypoxia, can produce spheroids with similar bulk growth dynamics but differing internal compositions (the proportion of the tumour which is proliferating, hypoxic/quiescent and necrotic/nutrient-deficient). We use this model to show that the types of experiment conducted by Dorie et al. could be used to infer spheroid composition and parameters associated with tumour cell lines such as their sensitivity to hypoxia or average rate of proliferation, and note that these observations cannot be conducted within previous continuum models of microbead infiltration into tumour spheroids as they rely on resolving the trajectories of individual microbeads.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies