Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Probiotics: a Promising Generation of Heavy Metal Detoxification.

Tytuł:
Probiotics: a Promising Generation of Heavy Metal Detoxification.
Autorzy:
Abdel-Megeed RM; Therapeutic Chemistry Department, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt. .
Źródło:
Biological trace element research [Biol Trace Elem Res] 2021 Jun; Vol. 199 (6), pp. 2406-2413. Date of Electronic Publication: 2020 Aug 21.
Typ publikacji:
Journal Article; Review
Język:
English
Imprint Name(s):
Original Publication: [London, Clifton, N. J.] Humana Press.
MeSH Terms:
Metals, Heavy*/toxicity
Probiotics*
Animals ; Cadmium/toxicity ; Humans ; Lactobacillus ; Soil
References:
Munoz-Olivas R, Camara C (2001) Speciation related to human health. In: Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P (eds) Trace element speciation for environment, food and health. R Soc Chemi, Cambridge, pp 331–353.
Kheradmand K, Kamali K, Fathipour Y, Barzegar M, Goltapeh EM (2006) Effect of pigmy mite Pediculaster fletchmanni (Acari: Siteroptidae) on mineral elements of button mushroom Agaricus bisporous. P.J.B.S. 9:2177–2180.
Halttunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int JFood Microbiol 120:173–178.
Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chemis 14:84–98.
Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26.
Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. (PMID: 23466085)
Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. (PMID: 2004416020044160)
Huang L, Xie J, Lv B, Shi X, Li G, Liang F, Lian J (2013) Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Mar Pollut Bull 76(1-2):325–332. https://doi.org/10.1016/jmarpolbul.2013.03.037. (PMID: 10.1016/jmarpolbul.2013.03.03724070455)
Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748. (PMID: 14242024)
Parker RB (1974) Probiotics, the other half of the antibiotic story. Anim Nutr Health 29:4–8.
Marteau P, Messing B, Arrigoni E, Briet F, Flourie B, Morin MC, Rambaud JC (1997) Do patients with short-bowel syndrome need a lactose-free diet? J. C. Nutrition (13):13–16.
Salminen S, Bouley MC, Boutron-Rualt MC, Cummings J, Franck A, Gibson G, Isolauri E, MoreauMC RM, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Bri J Nutr 1:147–171.
Diplock AT, Aggett P, Ashwell M, Bornet F, Fern E, Roberfroid M (1999) Scientific concepts of functional foods in Europe: consensus document. Br J Nutr 81:S1–S27.
Ghosh D, Chattopadhyay P (2010) Preparation of idli batter, its properties and nutritional improvement during fermentation. J Food Sci Technol 48:610–615. https://doi.org/10.1007/s13197-010-0148-4. (PMID: 10.1007/s13197-010-0148-4235727953551127)
Vanaja G, Gotcheva V, Angelov A, Agrawal R (2011) Formation of volatiles and fatty acids of therapeutic importance in the probiotic Lactobacillus plantarum LPcfr adapted to resist GIT conditions. J Food Sci Technol 48:110–113. (PMID: 23572725)
FAO/WHO (2002) Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada. 1–11.
Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B, Dubois JJ, Daube G (2013) Microbial characterization of probiotics–advisory report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol Nutr Food Res 57:1479–1504. (PMID: 238016553910143)
Fijian S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767.
Oyetayo VO, Oyetayo FL (2005) Potential of probiotics as biotherapeutic agents targeting the innate immune system. Afr J Biotechnol 4(2):123–127.
Hebert EM, Saavedra L, Ferranti P (2010) In: Mozzi F, Raya RR, Vignolo GM (eds) Bioactive peptides derived fromcasein and whey proteins. Biotechnology of lactic acid bacteria: novel applications. Wiley- Blackwell, Ames, pp 233–249.
Walther B, Sieber R (2011) Bioactive proteins and peptides in foods. Int J Vitam Nutr Res 81:181–192. (PMID: 22139569)
Martinez-Villaluenga C, Penas E, Frias J (2017) Bioactive peptides in fermented foods: production and evidence for health effects fermented foods in health and disease prevention. Academic Press, Boston, pp 23–47.
Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565. (PMID: 10854441)
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56. (PMID: 15646026)
Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888. (PMID: 9119257)
Hanna PM, Kadiiska MB, Mason RP (1992) Oxygen-derived free-radical and active oxygen complex-formation from cobalt (II) chelates in vitro. Chem Res Toxicol 5:109–115. (PMID: 1316186)
Crans DC, Smee JJ, Gaidamauskas E, Yang LQ (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902. (PMID: 14871144)
Rin K, Kawaguchi K, Yamanaka K, Tezuka M, Oku N, Okada S (1995) DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals. Biol Pharm Bull 18:45–48. (PMID: 7735248)
Hartwig A, Schwerdtle T (2002) Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54. (PMID: 12052640)
Garcia-Esquinas E, Pollan M, Umans JG, Francesconi KA, Goessler W, Guallar E (2013) Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22:1944–1953. (PMID: 23800676)
Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am JInd Med 38(3):316–323.
Milatovic D, Gupta RC, Yin Z, Zaja-Milatovic S, Aschner M (2017) Manganese in reproductive and developmental toxicology:567–581. https://doi.org/10.1016/B978-0-12-804239-7.00032-9.
Larsen N, Vogensen FK, Gobel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ et al (2013) Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr 32:935–940. (PMID: 23510724)
Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D, Brazeilles R et al (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4:6328. (PMID: 252097134160712)
Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC (2018) Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front Immunol 9:1824. https://doi.org/10.3389/fimmu.2018.01824. (PMID: 10.3389/fimmu.2018.01824301318096090060)
Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Zhang H, Chen W (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150:264–271. (PMID: 22684513)
Coryell M, Mcalpine M, Pinkham NV, Mcdermott TR, Walk ST (2018) The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 9:5424. (PMID: 305757326303300)
Feng S, Liu Y, Huang Y, Zhao J, Zhang H, Zhai Q, Chen W (2019) Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice. FEMS Microbiol Lett 366.
Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K (2017) Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol 30:996–1005. (PMID: 282344685654721)
Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, van Bladeren P, Lindon JC, Holmes E, Nicholson JK (2011) Colonization induced host-gut microbial metabolic interaction. MBio 2:e00271–e00210. (PMID: 213639103045766)
Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Sauty M, Thomas P, Pot B, Foligné B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222:132–138. (PMID: 23916686)
Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W (2019a) Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: a pilot study of Chinese children. Environ Res 171:501–509. (PMID: 30743242)
Yu H, Zhang B, Liu XX, Yu S, Cheng JS et al (2016a) Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota. Environ Sci Technol 50:7189–7197. (PMID: 27280682)
Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W (2016a) Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 82:4429–4440. (PMID: 272081364959197)
Wang J, Hu W, Yang H, Chen F, Shu Y, Zhang G, Liu J, Liu Y, Li H, Guo L (2020a) Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food. Environ Int 138:105600. (PMID: 32120061)
Wang N, Jiang M, Zhang P, Shu H, Li Y, Guo Z, Li Y (2020b) Amelioration of Cd induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere 245:125613. (PMID: 31864061)
Wu GF, Xiao XP, Feng PY, Xie FQ, Yu ZS, Yuan WZ et al (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7.
Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB et al (2014) Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxicmetal levels in Tanzanian pregnant women and school children. Mbio:5.
Kadry MO, Abdel Megeed RM (2018) Probiotics as a complementary therapy in the model of cadmium chloride toxicity: crosstalk of β-catenin, BDNF, and StAR signaling pathways. Biol Trace Elem Res 185:404–413. (PMID: 29427035)
Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217. (PMID: 192761212664070)
Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S et al (2015) Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio:6.
Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC et al (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5.
Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214. (PMID: 192368874287357)
Ninkov M, Popov Aleksandrov A, Demenesku J, Mirkov I, Mileusnic D, Petrovic A, Grigorov I, Zolotarevski L, Tolinacki M, Kataranovski D, Brceski I, Kataranovski M (2015) Toxicity of oral cadmium intake: impact on gut immunity. Toxicol Lett 237:89–99. (PMID: 26051590)
Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F et al (2019b) Oral supplementation of lead intolerant intestinal microbes protects against lead (Pb) toxicity in mice. Front Microbiol 10:3161. (PMID: 32038590)
Mrvcic J, Stanzer D, Solic E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782. (PMID: 22806724)
Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78:6397–6404. (PMID: 227983643426676)
Gerbino E, Mobili P, Tymczyszyn E, Fausto R, Gómez-Zavaglia A (2011) FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. JMol Struct 987:186–192.
Upreti RK, Sinha V, Mishra R, Kannan A (2011) In vitro development of resistance to arsenite and chromium-VI in lactobacilli strains as perspective attenuation of gastrointestinal disorder. J Environ Biol 32:325. (PMID: 22167945)
Shrivastava R, Upreti RK, Chaturvedi UC (2003) Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium. FEMS Immunology & Medical Microbiology 38:65–70.
Ibrahim F, Ruvio S, Granlund L, Salminen S, Viitanen M, Ouwehand AC (2010) Probiotics and immunosenescence: cheese as a carrier. FEMS Immunol Med Microbiol 59:53–59. (PMID: 20236323)
Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neuro Molecular Med 15:192–208.
Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Aluminum(III) as a promoter of cellular oxidation. Coord Chem Rev 228:271–284.
Li M, Cui J, Gao Y, Zhang W, Sun L, Liu X, Liu Y, Sun D (2015) Pathological changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum. Toxicol Res-Uk 4:1366–1373.
Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psycho neuro endocrinology 38:1738–1747.
Tian F, Yu L, Zhai Q, Xiao Y, Shi Y, Jiang J, Liu X, Zhao J, Zhang H, Chen W (2017) The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice. PLoS One 12:e0175398. (PMID: 283886645384776)
Gareau MG (2014) Microbiota-gut-brain axis and cognitive function. In: Lyte M, Cryan JF (eds) Microbial endocrinology: the microbiotagut- brain axis in health and disease, Adv Exp med biol, vol 81, pp 357–371.
Raghuvanshi R, Chaudhari A, Kumar GN (2016) Amelioration of cadmium-and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid. Nutrition 32:1285–1294. (PMID: 27209211)
Bosscher D, Van Caillie-Bertrand M, Deelstra H (2003) Do thickening properties of locust bean gum affect the amount of calcium, iron and zinc available for absorption from infant formula? In vitro studies. Int J Food Sci Nutr 54:261–268. (PMID: 12850887)
Ademiluyi AO, Oboh G, Boligon AA, Athayde ML (2015) Dietary supplementation with fermented legumes modulate hyperglycemia and acetylcholinesterase activities in Streptozotocin-induced diabetes. Pathophysiology 22:195–201. (PMID: 26349771)
Reyes-Becerril M, Angulo C, Sanchez V, Cuesta A, Cruz A (2019) Methyl mercury, cadmium and arsenic(III)-induced toxicity, oxidative stress and apoptosis in Pacific red snapper leukocytes. Aquat Toxicol 213:105223. https://doi.org/10.1007/s00204-018-2332-7. (PMID: 10.1007/s00204-018-2332-731207538)
Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Bio 54:226–231. https://doi.org/10.1039/c9fo00587k. (PMID: 10.1039/c9fo00587k)
Ahuie Kouakou G, Gagnon H, Lacasse V, Wagner JR, Naylor S, Klarskov K (2019) Dehydroascorbic acid S-thiolation of peptides and proteins: role of homocysteine and glutathione. Free Radic Biol Med 141:233–243. https://doi.org/10.1039/c8fo02554a. (PMID: 10.1039/c8fo02554a31228548)
Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10(1/2):37. (PMID: 18525105)
Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43–53. (PMID: 11721280)
Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, Faas MM, de Vos P (2013) Probiotics can generate FoxP3 T-cell responses in the small intestine and simultaneously inducing CD4 and CD8 T cell activation in the large intestine. PLoS One 8:e68952. https://doi.org/10.1371/journal.pone.0068952. (PMID: 10.1371/journal.pone.0068952238619533701681)
Trapecar M, Goropevsek A, Gorenjak M, Gradisnik L, Slak RM (2014) A co-culture model of the developing small intestine offers new insight in the early immune-modulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-B p65 translocation. PLoS One 9:e86297. https://doi.org/10.1371/journal.pone.0086297. (PMID: 10.1371/journal.pone.0086297244549653894201)
Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer R-JM, Wells JM (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298:G851–G859. (PMID: 20224007)
Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W (2016b) Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 82:4429–4440. https://doi.org/10.1128/AEM.00695-16. (PMID: 10.1128/AEM.00695-16272081364959197)
Isolauri E, Sherman PM, Walker WA (2017) Intestinal microbiome: functional aspects in health and disease, Nestlé Nutr Inst Workshop Series, Nestec Ltd., Vevey/S. Karger AG., 88: 161-170. https://doi.org/10.1159/000455400.
Jintai C, Shanshan G, Yufei Z, Siqi M, Qiqi X, Wen C et al (2017) Animal source of lactic acid bacteria isolation and clone of the resistance gene against mercury. Heilongjiang Anim Sci Veter Med 3:138–141. https://doi.org/10.13881/j.cnki.hljxmsy.0230. (PMID: 10.13881/j.cnki.hljxmsy.0230)
Jiang X, Gu S, Liu D, Zhao L, Xia S, He X, Chen H, Ge J (2018) Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-kB signaling cascades. Front Microbiol 9:2425. https://doi.org/10.3389/fmicb.2018.02425. (PMID: 10.3389/fmicb.2018.02425303699176194351)
Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, El-Fatah AA, El Dalatony MM, Salama ES, Liu P, Li X (2020) Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota Commun. Biolo. 3:242.
Leilei Y, Qixiao Z, Fengwei T, Xiaoming L, Gang W, Jianxin Z, Hao Z, Arjan N, Wei C (2016) Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients. 8:783. https://doi.org/10.3390/nu8120783. (PMID: 10.3390/nu8120783)
Contributed Indexing:
Keywords: Bifidobacterium; Heavy metals; Lactobacillus; Probiotics
Substance Nomenclature:
0 (Metals, Heavy)
0 (Soil)
00BH33GNGH (Cadmium)
Entry Date(s):
Date Created: 20200822 Date Completed: 20210618 Latest Revision: 20210618
Update Code:
20240105
DOI:
10.1007/s12011-020-02350-1
PMID:
32821997
Czasopismo naukowe
Different environmental toxins especially heavy metals exist in soil, water, and air recording toxic effect on human, animal, and plant. These toxicant elements are widespread in environment causing various disturbances in biological systems. Numerous strategies have been applied recently to alleviate heavy metal contamination; however, most of these strategies were costly and seemed unfriendly to our environment. Probiotics are living cell bacteria with beneficial characteristics for human health. Lactobacillus and Bifidobacterium are the major probiotic groups; however, Pediococcus, Lactococcus, Bacillus, and yeasts are recorded as probiotic. The vital role of the probiotics on maintenance of body health was previously investigated. Probiotics were previously recorded to its powerful capacity to bind numerous targets and eliminate them with feces. These targets may be aluminum, cadmium, lead, or arsenic. The current review discusses the history of probiotics, detoxification role of probiotics caused by heavy metals, and mechanism of their action that modulate different signaling pathway disturbance associated with heavy metal accumulation in biological system.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies