Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait.

Tytuł:
Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait.
Autorzy:
Lan D; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Ji W; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Xiong X; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Liang Q; Novogene Bioinformatics Institute, Beijing, China.
Yao W; Novogene Bioinformatics Institute, Beijing, China.
Mipam TD; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Zhong J; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Li J; Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China.
Źródło:
Integrative zoology [Integr Zool] 2021 Sep; Vol. 16 (5), pp. 685-695. Date of Electronic Publication: 2020 Sep 02.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2012-: Richmond, Vic., Australia : Wiley Publishing Asia Pty Ltd
Original Publication: 2006-2012: [Oxford, England] : Blackwell Publishing
MeSH Terms:
Biological Evolution*
Genome*
Adaptation, Physiological/*genetics
Cattle/*genetics
Animals ; Bone Development/genetics ; Genome-Wide Association Study
References:
Barrett JC, Fry B, Maller J, Daly MJ (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-5.
Bro-Jorgensen J (2016). Evolution of the ungulate dewlap: Thermoregulation rather than sexual selection or predator deterrence? Frontiers in Zoology 13, 33.
Chen FH, Dong GH, Zhang DJ et al. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248-50.
Chen H, Xu Z, Fan F et al. (2019). Identification and mechanism evaluation of a novel osteogenesis promoting peptide from Tubulin Alpha-1C chain in Crassostrea gigas. Food Chemistry 272, 751-7.
Deng MT, Zhu F, Yang YZ et al. (2019). Genome-wide association study reveals novel loci associated with body size and carcass yields in pekin ducks. BMC Genomics 20, 1.
DePristo MA, Banks E, Poplin R et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43, 491-8.
Duran I, Taylor SP, Zhang W et al. (2016). Destabilization of the ift-b cilia core complex due to mutations in ift81 causes a spectrum of short-rib polydactyly syndrome. Scientific Reports 6, 34232.
Gilbert SF (2012). Ecological developmental biology: Environmental signals for normal animal development. Evolution & Development 14, 20-8.
Guo S, Savolainen P, Su J et al. (2006). Origin of mitochondrial DNA diversity of domestic yaks. BMC Evolutionary Biology 6, 73.
Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics 5, e1000695.
Hirose K, Mikawa S, Okumura N et al. (2013). Association of swine vertnin (VRTN) gene with production traits in Duroc pigs improved using a closed nucleus breeding system. Animal Science Journal 84, 213-21.
Kędzierska U, Banasiak Ł, Kiela P, Majewski PM (2018). Significance of NF-kappaB signaling and PARP1 activity in the TNF-induced inhibition of PHEX gene expression in human osteoblasts. Acta biochimica Polonica 65, 573-1.
Lan D, Xiong X, Mipam TD et al. (2018). Genetic diversity, molecular phylogeny, and selection evidence of jinchuan yak revealed by whole-genome resequencing. G3 8, 945-52.
Lee K, Kim H, Jeong D (2014). Microtubule stabilization attenuates vascular calcification through the inhibition of osteogenic signaling and matrix vesicle release. Biochemical and Biophysical Research Communications 451, 436-41.
Li H, Durbin R (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics 26, 589-95.
Li H, Handsaker B, Wysoker A et al. (2009). The sequence alignment/map format and samtools. Bioinformatics 25, 2078-9.
Li R (2019). Protecting rare and endangered species under climate change on the Qinghai Plateau, China. Ecology and Evolution 9, 427-36.
Li Z, Kawasumi M, Zhao B, Moisyadi S, Yang J (2010). Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra. Molecular Reproduction and Development 77, 990-7.
Mikawa S, Morozumi T, Shimanuki S et al. (2007). Fine mapping of a swine quantitative trait locus for number of vertebrae and analysis of an orphan nuclear receptor, germ cell nuclear factor (NR6A1). Genome Research 17, 586-93.
Mipam TD, Wen Y, Fu C et al. (2012). Maternal phylogeny of a newly-found yak population in China. International Journal of Molecular Sciences 13, 11455-70.
Mulch A, Chamberlain CP (2006). Earth science: The rise and growth of Tibet. Nature 439, 670-1.
Nakamura Y, Inloes JB, Katagiri T, Kobayashi T (2011). Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Molecular and Cellular Biology 31, 3019-28.
Narita Y, Kuratani S (2005). Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution 304, 91-106.
Oh SP, Yeo CY, Lee Y, Schrewe H, Whitman M, Li E (2002). Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes & Development 16, 2749-54.
Pandey MK, Gowda K, Sung SS et al. (2017). A novel dual inhibitor of microtubule and bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Experimental Hematology 53, 31-42.
Park S, Lee YJ, Lee HJ et al. (2004). B-cell translocation gene 2 (Btg2) regulates vertebral patterning by modulating bone morphogenetic protein/smad signaling. Molecular and Cellular Biology 24, 10256-62.
Qiu Q, Wang L, Wang K et al. (2015). Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Communications 6, 10283.
Qiu Q, Zhang G, Ma T et al. (2012). The yak genome and adaptation to life at high altitude. Nature Genetics 44, 946-9.
Schiffels S, Durbin R (2014). Inferring human population size and separation history from multiple genome sequences. Nature Genetics 46, 919-25.
Stelcer E, Kulcenty K, Rucinski M et al. (2019). The role of micrornas in early chondrogenesis of human induced pluripotent stem cells (hipscs). International Journal of Molecular Sciences 20, 4371.
Tang H, Peng J, Wang P, Risch NJ (2005). Estimation of individual admixture: Analytical and study design considerations. Genetic Epidemiology 28, 289-301.
Wang K, Li M, Hakonarson H (2010). Annovar: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38, e164.
Wellik DM (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics: An Official Publication of the American Association of Anatomists 236, 2454-63.
Yang J, Lee SH, Goddard ME, Visscher PM (2011). Gcta: A tool for genome-wide complex trait analysis. American Journal of Human Genetics 88, 76-82.
Yang J, Li WR, Lv FH et al. (2016). Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution 33, 2576-92.
Zhao S, Zheng P, Dong S et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45, 67-71.
Zhou X, Stephens M (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44, 821-4.
Zhou X, Wang B, Pan Q et al. (2014). Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nature Genetics 46, 1303-10.
Grant Information:
31872361 National Natural Science Foundation of China; 2018NQN02 "the Fundamental Research Funds for the Central Universities", Southwest Minzu University; 20ZYZYTS0020 Sichuan provincial central government guiding local science and technology development
Contributed Indexing:
Keywords: Qinghai-Tibet Plateau; adaptive evolution; genetic mechanism; multirib trait; yak
Entry Date(s):
Date Created: 20200822 Date Completed: 20210907 Latest Revision: 20210907
Update Code:
20240105
DOI:
10.1111/1749-4877.12484
PMID:
32822522
Czasopismo naukowe
The adaptation and diversity of animals to the extreme environments of the Qinghai-Tibet Plateau (QTP) are typical materials to study adaptive evolution. The recently discovered Jinchuan yak population has many individuals with multiple ribs. However, little is known about this yak's origin, evolution, and the genetic mechanisms that formed its unique multirib trait. Here, we report a valuable population genome resource of the Jinchuan yak by resequencing the whole genome of 150 individuals. Population genetic polymorphism and structure analysis reveal that Jinchuan yak can be differentiated as a unique and original yak population among the domestic yak. Combined with geological change, the Jinchuan yak's evolutionary origin is speculated to be about 6290 years ago, which may be related to the unique geographical environment of the eastern edge of the QTP during this period. Compared with other domestic yaks, this new population has 280 positively selected genes. The genes related to skeletal function hold a considerable and remarkable proportion, suggesting that the specific skeletal characteristics have been enhanced in the adaptive evolution of Jinchuan yak in the extreme plateau environment. The genome-wide association study has revealed that TUBA8 and TUBA4A, the genes that regulate the cytoskeleton, are potential genes associated with the multirib trait. Our findings provide a basis to further understand the generation mechanism of the adaptive evolution of this new population in high-altitude extreme environments and the multivertebrate trait of domestic animals.
(© 2020 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies