Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An understated danger: Antimicrobial resistance in aquaculture and pet fish in Switzerland, a retrospective study from 2000 to 2017.

Tytuł:
An understated danger: Antimicrobial resistance in aquaculture and pet fish in Switzerland, a retrospective study from 2000 to 2017.
Autorzy:
Delalay G; Veterinary Public Health Institute, University of Bern, Bern, Switzerland.; Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland.; Department of Animal Health, Federal Food Safety and Veterinary Office FSVO, Bern, Switzerland.
Berezowski JA; Veterinary Public Health Institute, University of Bern, Bern, Switzerland.
Diserens N; Koipraxis GmbH, Ulmiz, Switzerland.
Schmidt-Posthaus H; Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland.
Źródło:
Journal of fish diseases [J Fish Dis] 2020 Oct; Vol. 43 (10), pp. 1299-1315. Date of Electronic Publication: 2020 Aug 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Oxford, Blackwell Scientific Publications.
MeSH Terms:
Drug Resistance, Bacterial*
Anti-Infective Agents/*pharmacology
Fishes/*microbiology
Animals ; Aquaculture ; Drug Resistance, Multiple, Bacterial ; Fish Diseases/microbiology ; Microbial Sensitivity Tests ; Pets/microbiology ; Retrospective Studies ; Switzerland
References:
Adelowo, O. O., & Idowu Osuntade, A. (2019). Class 1 integron, sulfonamide and florfenicol resistance genes in bacteria from three Unsanitary Landfills, Ibadan, Nigeria. Journal of Microbiology and Infectious Diseases, 9(1), 34-42. https://doi.org/10.5799/jmid.537165.
Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 100(5), 1103-1113. https://doi.org/10.1111/j.1365-2672.2006.02812.x.
Al-Bahry, S. N., Mahmoud, I. Y., Al-Belushi, K. I. A., Elshafie, A. E., Al-Harthy, A., & Bakheit, C. K. (2009). Coastal sewage discharge and its impact on fish with reference to antibiotic resistant enteric bacteria and enteric pathogens as bio-indicators of pollution. Chemosphere, 77(11), 1534-1539. https://doi.org/10.1016/J.CHEMOSPHERE.2009.09.052.
Anacker, R. L., & Ordal, E. J. (1959). Studies on the myxobacterium Chondrococcus columnaris: I. Serological typing. Journal of Bacteriology, 78(1), 25-32. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC290480/.
Ao, H., & Takagi, T. (2005). ALICE: An algorithm to extract abbreviations from MEDLINE. Journal of the American Medical Informatics Association, 12(5), 576-586. https://doi.org/10.1197/jamia.M1757.
Aquatis (2019). Aquatis. Retrieved from http://www.aquatis.ch/en/about/.
Association for Pet Animals. (2018). Animaux familiers en Suisse. Retrieved from https://www.vhn.ch/fr/statistiques/animaux-familiers-en-suisse/.
Aunsmo, A., Bruheim, T., Sandberg, M., Skjerve, E., Romstad, S., & Larssen, R. B. (2008). Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Diseases of Aquatic Organisms, 81(2), 99-107. https://doi.org/10.3354/dao01954.
Austin, B., & Austin, D. A. (2016). Bacterial fish pathogens: Disease of farmed and wild fish. In Bacterial Fish pathogens: disease of farmed and wild fish (6th ed., Vol. 9783319326). Springer International Publishing. https://doi.org/10.1007/978-3-319-32674-0.
Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14, 176-182. https://doi.org/10.1016/j.tim.2006.02.006.
Baquero, F., Martínez, J.-L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260-265. https://doi.org/10.1016/J.COPBIO.2008.05.006.
Barnes, M. E., & Brown, M. L. (2011). A review of flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. The Open Fish Science Journal, 4(1), 40-48. https://doi.org/10.2174/1874401X01104010040.
BD. (2011). BBL sensi-disc antimicrobial susceptibility test discs. Retrieved from https://legacy.bd.com/ds/technicalCenter/inserts/8840621(201107).pdf.
Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., … Martinez, J. L. (2015). Tackling antibiotic resistance: The environmental framework. Nature Reviews Microbiology, 13(5), 310-317. https://doi.org/10.1038/nrmicro3439.
Blancheton, J. P., Attramadal, K. J. K., Michaud, L., d'Orbcastel, E. R., & Vadstein, O. (2013). Insight into bacterial population in aquaculture systems and its implication. Aquacultural Engineering, 53, 30-39. https://doi.org/10.1016/J.AQUAENG.2012.11.009.
Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., … Corner, R. (2010). Aquaculture: Global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2897-2912. https://doi.org/10.1098/rstb.2010.0170.
Brudeseth, B. E., Wiulsrød, R., Fredriksen, B. N., Lindmo, K., Løkling, K. E., Bordevik, M., … Gravningen, K. (2013). Status and future perspectives of vaccines for industrialised fin-fish farming. Fish & Shellfish Immunology, 35(6), 1759-1768. https://doi.org/10.1016/j.fsi.2013.05.029.
Bruun, M. S., Schmidt, A. S., Madsen, L., & Dalsgaard, I. (2000). Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture, 187(3-4), 201-212. https://doi.org/10.1016/S0044-8486(00)00310-0.
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x.
Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7), e127-e133. https://doi.org/10.1016/S1473-3099(16)00100-6.
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15(7), 1917-1942. https://doi.org/10.1111/1462-2920.12134.
Chassot, E., Bonhommeau, S., Dulvy, N. K., Mélin, F., Watson, R., Gascuel, D., & Le Pape, O. (2010). Global marine primary production constrains fisheries catches. Ecology Letters, 13(4), 495-505. https://doi.org/10.1111/j.1461-0248.2010.01443.x.
Chen, H., Jing, L., Teng, Y., & Wang, J. (2018). Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Science of the Total Environment, 618, 409-418. https://doi.org/10.1016/j.scitotenv.2017.11.054.
Cipriano, R. C., & Austin, B. (2001). Furunculosis and other Aeromonad diseases. In P. Woo & D. Bruno (Eds.), Fish diseases and disorders (pp. 435-494). Wallington, UK: CAB International.
CliniPharm. (2019). ARCHIV: Inoxyl ad us. vet., Arzneimittelvormischung. Retrieved from https://www.vetpharm.uzh.ch/reloader.htm?tak/OLD/05000000/00051119.01?inhalt_c.htm.
Czekalski, N., Berthold, T., Caucci, S., Egli, A., & Buergmann, H. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into lake Geneva, Switzerland. Frontiers in Microbiology, 3, 106. Retrieved from https://www.frontiersin.org/article/10.3389/fmicb.2012.00106.
Dadar, M., Dhama, K., Vakharia, V. N., Hoseinifar, S. H., Karthik, K., Tiwari, R., … Joshi, S. K. (2017). Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Reviews in Fisheries Science & Aquaculture, 25(3), 184-217. https://doi.org/10.1080/23308249.2016.1261277.
Dancer, S. J. (2004). How antibiotics can make us sick: The less obvious adverse effects of antimicrobial chemotherapy. The Lancet Infectious Diseases, 4(10), 611-619. https://doi.org/10.1016/S1473-3099(04)01145-4.
Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current Opinion in Microbiology, 14(3), 251-258. https://doi.org/10.1016/j.mib.2011.03.004.
Delalay, G., Berezowski, J., N. Diserens, N., & Schmidt-Posthaus, H. (2019). Characteristics of bacterial isolates in Swiss farmed and ornamental fish from a retrospective study from 2000 to 2017. Schweizer Archiv Für Tierheilkunde, 161(1), 43-57. https://doi.org/10.17236/sat00193.
Dennesen, P. J. W., Bonten, M. J. M., & Weinstein, R. A. (1998). Multiresistant bacteria as a hospital epidemic problem. Annals of Medicine, 30(2), 176-185. https://doi.org/10.3109/07853899808999401.
Diserens, N., Presi, P., Bernet, D., Schüpbach-Regula, G., & Wahli, T. (2013). Risk assessment for the design of a risk-based surveillance programme for fish farms in Switzerland (in accordance with Council Directive 2006/88/EC of the European Union). Revue Scientifique et Technique (International Office of Epizootics), 32(3), 751-763. https://doi.org/10.20506/rst.32.2.2219.
Dobiasova, H., Kutilova, I., Piackova, V., Vesely, T., Cizek, A., & Dolejska, M. (2014). Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Veterinary Microbiology, 171(3-4), 413-421. https://doi.org/10.1016/j.vetmic.2014.02.011.
Dohoo, I., Martin, W., & Stryhn, H. (2003). Veterinary epidemiologic research (1st. ed.). Charlottetown, Prince Edwards Island, CA: AVC Inc.
Eurostat. (2019). Population change - Demographic balance and crude rates at national level. Retrieved from http://appsso.eurostat.ec.europa.eu/nui/show.do?query=BOOKMARK_DS-054722_QID_-3AB38219_UID_-3F171EB0&layout=GEO,L,X,0;TIME,C,Y,0;INDIC_DE,L,Z,0;INDICATORS,C,Z,1;&zSelection=DS-054722INDIC_DE,JAN;DS-054722INDICATORS,OBS_FLAG;&rankName1=INDICATORS_1_2_-1_2&.
FAO (Food & Agriculture Organization of the United Nations). (2018). FAOSTAT. Supply - Livestock and Fish Primary Equivalent. Rome, IT. FAOSTAT. Supply - Livestock and Fish Primary Equivalent. Rome, IT. Retrieved from http://www.fao.org/faostat/en/#data/%0DCL.
FAO (Food & Agriculture Organization of the United Nations). (2012). The state of world fisheries and aquaculture 2012. Retrieved from https://doi.org/92-5-105177-1.
FDHA (Federal Department of Home Affairs). (2016). Ordonnance du DFI sur les limites maximales applicables aux résidus de substances pharmacologiquement actives et d'additifs pour l'alimentation animale dans les denrées alimentaires d'origine animale 817.022.13, Annexe 1, Liste 4. Retrieved from https://www.admin.ch/opc/fr/classified-compilation/20143414/index.html.
FOEN (Federal Office for the Environment). (2018). Statistiques fédérales de la pêche. Bern, CH. Retrieved from https://www.uzh.ch/wild/%0Dssl-dir/fishst.5/?page=home.
FOPH (Federal Office of Public Health), & FSVO (Federal Food Safety and Veterinary Office). (2018 & Swiss Antibiotic Resistance Report 2018. Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland. Bern, Switzerland: FOPH. https://www.bundespublikationen.admin.ch/cshop_bbl/b2c/start/(layout=7.01-13_131_69_72_6_133&carea=0024817F68691EE1B4AF0C6E78170EF0&rdb=0&citem=0024817F68691EE1B4AF0C6E78170EF01402EC770E351ED8B4D50D15C60D9A58&uiarea=0)/.do.
French Directorate General for Food. (2017). Ecoantibio: Reducing the use of veterinary antibiotics. Retrieved from https://agriculture.gouv.fr/telecharger/87191?token=283b0044f511d2bceca3f2690b407b63.
FSO (Federal Statistical Office). (2018a). Evolution des données démographiques 1950-2016 je-f-01.01.01. Bern, CH. Retrieved from https://www.bfs.admin.ch/bfs/fr/home/statistiques/population.%0Dassetdetail.3442539.html.
FSO (Federal Statistical Office). (2018b). Production et consommation de poisson 2000-2017 je-f-07.05.02.01. Bern, CH. Retrieved from https://www.bfs.admin.ch/bfs/fr/home/statistiques/%0Dagriculture-sylviculture/chasse-peche-pisciculture/peche.%0Dassetdetail.4902198.html.
Gao, P., He, S., Huang, S., Li, K., Liu, Z., Xue, G., & Sun, W. (2015). Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Applied Microbiology and Biotechnology, 99(9), 3971-3980. https://doi.org/10.1007/s00253-015-6404-9.
Gopal Rao, G. (1998). Risk factors for the spread of antibiotic-resistant bacteria. Drugs, 55(3), 323-330. https://doi.org/10.2165/00003495-199855030-00001.
Gould, I. M. (1999). A review of the role of antibiotic policies in the control of antibiotic resistance. Journal of Antimicrobial Chemotherapy, 43(4), 459-465. https://doi.org/10.1093/jac/43.4.459.
Graveland, H., Wagenaar, J. A., Heesterbeek, H., Mevius, D., van Duijkeren, E., & Heederik, D. (2010). Methicillin resistant staphylococcus aureus ST398 in veal calf farming: Human MRSA carriage related with animal antimicrobial usage and farm hygiene. PLoS One, 5(6), e10990. https://doi.org/10.1371/journal.pone.0010990.
Gudding, R., & Goodrich, T. (2014). The history of fish vaccination. In R. Gudding, A. Lillehaug, & Ø. Evensen (Eds.), Fish vaccination (pp. 12-21). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118806913.ch1.
Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engineering, 34(3), 163-171. https://doi.org/10.1016/j.aquaeng.2005.08.003.
Harvell, C. D., Kim, K., Burkholder, J. M., Colwell, R. R., Epstein, P. R., Grimes, D. J., … Vasta, G. R. (1999). Emerging marine diseases - Climate links and anthropogenic factors. Science, 285(5433), 1505-1510. https://doi.org/10.1126/science.285.5433.1505.
Hassan, M., Kjos, M., Nes, I. F., Diep, D. B., & Lotfipour, F. (2012). Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology, 113(4), 723-736. https://doi.org/10.1111/j.1365-2672.2012.05338.x.
Hatha, M., Vivekanandhan, A. A. A., Julie Joice, G., & Christol,   (2005). Antibiotic resistance pattern of motile aeromonads from farm raised fresh water fish. International Journal of Food Microbiology, 98(2), 131-134. https://doi.org/10.1016/J.IJFOODMICRO.2004.05.017.
Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253. https://doi.org/10.1086/605667.
Ho, S. P., Hsu, T. Y., Chen, M. H., & Wang, W. S. (2000). Antibacterial effect of chloramphenicol, thiamphenicol and florfenicol against aquatic animal bacteria. Journal of Veterinary Medical Science, 62(5), 479-485. https://doi.org/10.1292/jvms.62.479.
Ibrahim, M., Ahmad, F., Yaqub, B., Ramzan, A., Imran, A., Afzaal, M., … Ahmed, S. (2020). Current trends of antimicrobials used in food animals and aquaculture. Antibiotics and Antimicrobial Resistance Genes in the Environment, 39-69. https://doi.org/10.1016/B978-0-12-818882-8.00004-8.
IVI (Institute of Virology and Immunology). (2020). Approved immunological veterinary products. Retrieved from https://www.ivi.admin.ch/ivi/de/home/impfungen/impfstoffe.html.
JAMRAI (Joint Action Antimicrobial Resistance and Healthcare-Associated Infections). (2019). Joint action antimicrobial resistance and healthcare-associated infections. Retrieved from https://eu-jamrai.eu/.
Jensen, L. B., Birk, T., Borck Høg, B., Stehr, L., Aabo, S., & Korsgaard, H. (2018). Cross and co resistance among Danish porcine E. coli isolates. Research in Veterinary Science, 119, 247-249. https://doi.org/10.1016/J.RVSC.2018.07.002.
Keller, U., Battaglia Richi, E., Beer, M., Darioli, R., Meyer, K., Renggli, A., & Stoffel-Kurt, N. (2012). Sixième rapport sur la nutrition en Suisse, Bern, Switzerland: FOPH (Federal Office of Public Health).
King, R. K., Flick, G. J., Pierson, D., Smith, S. A., Boardman, G. D., & Coale, C. W. (2004). Identification of bacterial pathogens in biofilms of recirculating aquaculture systems. Journal of Aquatic Food Product Technology, 13(1), 125-133. https://doi.org/10.1300/J030v13n01_11.
Kümmerer, K. (2009a). Antibiotics in the aquatic environment - A review - Part I. Chemosphere, 75(4), 417-434. https://doi.org/10.1016/J.CHEMOSPHERE.2008.11.086.
Kümmerer, K. (2009b). Antibiotics in the aquatic environment - A review - Part II. Chemosphere, 75(4), 435-441. https://doi.org/10.1016/J.CHEMOSPHERE.2008.12.006.
Lafferty, K. D., Harvell, C. D., Conrad, J. M., Friedman, C. S., Kent, M. L., Kuris, A. M., … Saksida, S. M. (2015). Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science, 7(1), 471-496. https://doi.org/10.1146/annurev-marine-010814-015646.
Larsen, J. L., & Pedersen, K. (1997). Vaccination strategies in freshwater salmonid aquaculture. Developments in Biological Standardization, 90, 391-400. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9270868.
Levy, S. B. (1998). The challenge of antibiotic resistance. Scientific American, 278(3), 46-53. Retrieved from http://www.jstor.org/stable/26057703.
Li, S., Zhang, S., Ye, C., Lin, W., Zhang, M., Chen, L., … Yu, X. (2017). Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes. Marine Pollution Bulletin, 118(1-2), 289-296. https://doi.org/10.1016/j.marpolbul.2017.03.003.
Lin, M., Wu, X., Yan, Q., Ma, Y., Huang, L., Qin, Y., & Xu, X. (2016). Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds. Diseases of Aquatic Organisms, 120(2), 115-123. https://doi.org/10.3354/dao03013.
Livermore, D. M. (2007). Introduction: The challenge of multiresistance. International Journal of Antimicrobial Agents, 29, S1-S7. https://doi.org/10.1016/S0924-8579(07)00158-6.
Luo, Y., Mao, D., Rysz, M., Zhou, Q., Zhang, H., Xu, L., … J. J. Alvarez, P. (2010). Trends in antibiotic resistance genes occurrence in the haihe river. China. Environmental Science & Technology, 44(19), 7220-7225. https://doi.org/10.1021/es100233w.
Marana, M. H., Sepúlveda, D., Chen, D., Al-Jubury, A., Jaafar, R. M., Kania, P. W., … Buchmann, K. (2019). A pentavalent vaccine for rainbow trout in Danish aquaculture. Fish and Shellfish Immunology, 88, 344-351. https://doi.org/10.1016/j.fsi.2019.03.001.
Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36-41. https://doi.org/10.1016/j.tim.2013.11.001.
Martinez, J. (2012). Natural antibiotic resistance and contamination by antibiotic resistance determinants: The two ages in the evolution of resistance to antimicrobials. Frontiers in Microbiology, 3, 1. Retrieved from https://www.frontiersin.org/article/10.3389/fmicb.2012.00001.
Matyar, F. (2007). Distribution and antimicrobial multiresistance in Gram-negative bacteria isolated from Turkish sea bass (Dicentrarchus labrax L., 1781) farm. Annals of Microbiology, 57(1), 35-38. https://doi.org/10.1007/BF03175047.
McGarey, D. J., Milanesi, L., Foley, D. P., Reyes, B. Jr, Frye, L. C., & Lim, D. V. (1991). The role of motile aeromonads in the fish disease, ulcerative disease syndrome (UDS). Experientia, 47(5), 441-444. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2044697.
McKinney, C. W., Loftin, K. A., Meyer, M. T., Davis, J. G., & Pruden, A. (2010). Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environmental Science and Technology, 44(16), 6102-6109. https://doi.org/10.1021/es9038165.
Michel, C., Kerouault, B., & Martin, C. (2003). Chloramphenicol and florfenicol susceptibility of fish-pathogenic bacteria isolated in France: Comparison of minimum inhibitory concentration, using recommended provisory standards for fish bacteria. Journal of Applied Microbiology, 95(5), 1008-1015. https://doi.org/10.1046/j.1365-2672.2003.02093.x.
Midtlyng, P. J., Grave, K., & Horsberg, T. E. (2011). What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquaculture Research, 42(s1), 28-34. https://doi.org/10.1111/j.1365-2109.2010.02726.x.
Miller, Y. W., Eady, E. A., Lacey, R. W., Cove, J. H., Joanes, D. N., & Cunliffe, W. J. (1996). Sequential antibiotic therapy for acne promotes the carriage of resistant staphylococci on the skin of contacts. Journal of Antimicrobial Chemotherapy, 38(5), 829-837. https://doi.org/10.1093/jac/38.5.829.
Miranda, C. D., & Zemelman, R. (2002). Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Science of the Total Environment, 293(1-3), 207-218. https://doi.org/10.1016/S0048-9697(02)00022-0.
Munang'andu, H. (2018). Intracellular bacterial infections: A challenge for developing cellular mediated immunity vaccines for farmed fish. Microorganisms, 6(2), 33. https://doi.org/10.3390/microorganisms6020033.
Munang'andu, H. M., & Evensen, Ø. (2019). Correlates of protective immunity for fish vaccines. Fish and Shellfish Immunology, 85, 132-140. https://doi.org/10.1016/j.fsi.2018.03.060.
Naviner, M., Giraud, E., Thorin, C., Le Bris, H., Pouliquen, H., & Ganiere, J.-P. (2007). Effects of three dosages of oral oxolinic acid treatment on the selection of antibiotic-resistant Aeromonas: Experimental approach in farmed trout. Aquaculture, 269(1-4), 31-40. https://doi.org/10.1016/J.AQUACULTURE.2007.03.014.
Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073), 1064-1073. https://doi.org/10.1126/science.257.5073.1064.
Noga, E. J. (2010). Fish disease: Diagnosis and treatment (2nd ed.). In North. https://doi.org/10.1002/9781118786758.
Oliveira, J., Castilho, F., Cunha, A., & Pereira, M. J. (2012). Bacteriophage therapy as a bacterial control strategy in aquaculture. Aquaculture International, 20(5), 879-910. https://doi.org/10.1007/s10499-012-9515-7.
Perreten, V. (2005). resistance in the food chain and in bacteria from animals: Relevance to human infections. Frontiers in Antimicrobial Resistance (pp. 446-464). American Society of Microbiology. https://doi.org/10.1128/9781555817572.ch34.
Persoons, D., Haesebrouck, F., Smet, A., Herman, L., Heyndrickx, M., Martel, A., … Dewulf, J. (2011). Risk factors for ceftiofur resistance in Escherichia coli from Belgian broilers. Epidemiology and Infection, 139(5), 765-771. https://doi.org/10.1017/S0950268810001524.
Petersen, A., Andersen, J. S., Kaewmak, T., Somsiri, T., & Dalsgaard, A. (2002). Impact of integrated fish farming on antimicrobial resistance in a pond environment. Applied and Environmental Microbiology, 68(12), 6036-6042. https://doi.org/10.1128/aem.68.12.6036-6042.2002.
Rodgers, C. J., & Furones, M. D. (2009). Antimicrobial agents in aquaculture: Practice, needs and issues. In B. Basurco & C. Rogers (Eds.), The use of veterinary drugs and vaccines in Mediterranean aquaculture (Vol. 86, pp. 41-59). Zaragoza: CIHEAM. Retrieved from http://om.ciheam.org/om/pdf/a86/00801061.pdf.
Rurangwa, E., & Verdegem, M. C. J. (2015). Microorganisms in recirculating aquaculture systems and their management. Reviews in Aquaculture, 7(2), 117-130. https://doi.org/10.1111/raq.12057.
Safdar, N., & Maki, D. G. (2002). The Commonality of Risk Factors for Nosocomial Colonization and Infection with Antimicrobial-Resistant Staphylococcus aureus, Enterococcus, Gram-Negative Bacilli, Clostridium difficile, and Candida. Annals of Internal Medicine, 136(11), 834-844. https://doi.org/10.7326/0003-4819-136-11-200206040-00013.
Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215-1226. https://doi.org/10.1016/J.ENVINT.2008.04.009.
Schmidt, A. S., Bruun, M. S., Dalsgaard, I., Pedersen, K., & Larsen, J. L. (2000). Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four danish rainbow trout farms. Applied and Environmental Microbiology, 66(11), 4908-4915. https://doi.org/10.1128/AEM.66.11.4908-4915.2000.
Schreier, H. J., Mirzoyan, N., & Saito, K. (2010). Microbial diversity of biological filters in recirculating aquaculture systems. Current Opinion in Biotechnology, 21(3), 318-325. https://doi.org/10.1016/J.COPBIO.2010.03.011.
Smith, P., Hiney, M. P., & Samuelsen, O. B. (1994). Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annual Review of Fish Diseases, 4, 273-313. https://doi.org/10.1016/0959-8030(94)90032-9.
Sommerset, I., Krossøy, B., Biering, E., & Frost, P. (2005). Vaccines for fish in aquaculture. Expert Review of Vaccines, 4(1), 89-101. https://doi.org/10.1586/14760584.4.1.89.
StAR (Strategy on Antibiotic Resistance). (2019). Strategy on antibiotic resistance. Retrieved from https://www.star.admin.ch/star/en/home.html.
Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., & McArthur, J. V. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 8(9), 1510-1514. https://doi.org/10.1111/j.1462-2920.2006.01091.x.
Subasinghe, R. P., Bondad-Reantaso, M. G., & McGladdery, S. (2001). Aquaculture development, health and wealth. In R. Subasinghe, P. Bueno, M. Phillips, C. Hough, S. McGladdery, & J. Arthur (Eds.), Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium (pp. 167-191). NACA and FAO. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=XF2003411913#.Wm9TgpOn1ug.mendeley.
Bio Suisse. (2009). Piscicultures Biologiques 2009.
Bio Suisse. (2016). Piscicultures Bio Suisse Janvier: Bio Suisse.
Summers, A. O. (2002). Generally overlooked fundamentals of bacterial genetics and ecology. Clinical Infectious Diseases, 34(s3), S85-S92. https://doi.org/10.1086/340245.
Swiss Federal Council. (2004). Ordonnance sur les médicaments vétérinaires 812.212.27. Retrieved from https://www.admin.ch/opc/fr/classified-compilation/20030705/index.html.
Swiss Federal Council. (2015). Stratégie Antibiorésistance Suisse. Retrieved from https://www.star.admin.ch/dam/star/fr/dokumente/strategiebericht-star.pdf.download.pdf/stratégie-antibiorésistance-fr.pdf.
Tageswoche. (2018). Ozeanium. Retrieved from https://tageswoche.ch/gesellschaft/alles-was-sie-ueber-das-basler-ozeanium-wissen-muessen/.
Tello, A., Austin, B., & Telfer, T. C. (2012). Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental Health Perspectives, 120(8), 1100-1106. https://doi.org/10.1289/ehp.1104650.
Thrusfield, M. (2007). Veterinary epidemiology (3rd. ed.). Oxford, UK: Blackwell Science Ltd.
Tobback, E., Decostere, A., Hermans, K., Haesebrouck, F., & Chiers, K. (2007). Yersinia ruckeri infections in salmonid fish. Journal of Fish Diseases, 30(5), 257-268. https://doi.org/10.1111/j.1365-2761.2007.00816.x.
van Rijn, J. (2013). Waste treatment in recirculating aquaculture systems. Aquacultural Engineering, 53, 49-56. https://doi.org/10.1016/J.AQUAENG.2012.11.010.
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P & T: A Peer-Reviewed Journal for Formulary Management, 40(4), 277-283. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25859123.
Verner-Jeffreys, D. W., Welch, T. J., Schwarz, T., Pond, M. J., Woodward, M. J., Haig, S. J., … Baker-Austin, C. (2009). High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One, 4(12), https://doi.org/10.1371/journal.pone.0008388.
Watts, E. M. J., Schreier, J. H., Lanska, L., & Hale, S. M. (2017). The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Marine Drugs, 15(6), 158. https://doi.org/10.3390/md15060158.
WHO (World Health Organisation). (2015). Global action plan on antimicrobial resistance. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1.
WHO (World Health Organisation), FAO (Food & Agriculture Organisation of the United Nations), & OIE (World Organisation for Animal Health). (2016). Antimicrobial resistance: A manual for developing national action plans. Retrieved from https://www.who.int/antimicrobial-resistance/national-action-plans/manual/en/.
Williams, R. J., & Heymann, D. L. (1998). Containment of antibiotic resistance. Science, 279(5354), 1153-1154. https://doi.org/10.1126/science.279.5354.1153.
Worm, B., & Branch, T. A. (2012). The future of fish. Trends in Ecology & Evolution, 27(11), 594-599. https://doi.org/10.1016/j.tree.2012.07.005.
Yamamoto, Y., Yamaguchi, A., Bono, H., & Takagi, T. (2011). Allie: A database and a search service of abbreviations and long forms. Database, 2011, bar013. https://doi.org/10.1093/database/bar013.
Zhang, Q., Jia, A., Wan, Y., Liu, H., Wang, K., Peng, H., … Hu, J. (2014). Occurrences of Three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli. Environmental Science & Technology, 48(24), 14317-14325. https://doi.org/10.1021/es503700j.
Contributed Indexing:
Keywords: Switzerland; antimicrobial resistance; fish bacteriology; freshwater aquaculture; multiresistance; ornamental fish
Substance Nomenclature:
0 (Anti-Infective Agents)
Entry Date(s):
Date Created: 20200825 Date Completed: 20210218 Latest Revision: 20210218
Update Code:
20240105
DOI:
10.1111/jfd.13234
PMID:
32830338
Czasopismo naukowe
Aquaculture is a rapidly growing field of food production. However, morbidity and mortality are higher in aquaculture species than in domestic animals. Bacterial diseases are a leading cause of farmed fish morbidity and are often treated with antimicrobials. Since most Swiss fish farms release effluents directly into surface water without treatment and since aquaculture fish are consumed by humans, antimicrobial resistance (AMR) and multi-resistance in aquaculture fish are important for environmental and public health. In this study, AMR tests for 14 antimicrobials were performed on 1,448 isolates from 1,134 diagnostic laboratory submissions from farmed and ornamental fish submissions for the period from 2000 to 2017. Amoxicillin, gentamycin and norfloxacin had the lowest proportion of resistant samples. However, AMR was highly variable over time. Resistance proportions were higher in: (a) ornamental fish compared with farmed fish, (b) fish from recirculation systems compared with those from other farming systems and (c) isolates originating from skin compared with those originating from inner organs. Multiple resistances were common. The results of this study provide useful data for Swiss fish veterinarians and some interesting hypotheses about risk factors for AMR in aquaculture and pet fish in Switzerland. However, further research is needed to define risk factors.
(© 2020 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies