-
Tytuł :
-
On the dynamical modeling of COVID-19 involving Atangana-Baleanu fractional derivative and based on Daubechies framelet simulations.
-
Autorzy :
-
Mohammad M; Zayed University, United Arab Emirates.
Trounev A; Kuban State Agrarian University, Russia.
- Pokaż więcej
-
Źródło :
-
Chaos, solitons, and fractals [Chaos Solitons Fractals] 2020 Nov; Vol. 140, pp. 110171. Date of Electronic Publication: 2020 Jul 28.
-
Typ publikacji :
-
Journal Article
-
Język :
-
English
-
Imprint Name(s) :
-
Original Publication: Oxford ; New York : Pergamon Press, c1991-
-
References :
-
Chaos Solitons Fractals. 2020 Jun;135:109846. (PMID: 32341628)
Chaos Solitons Fractals. 2020 Jul;136:109860. (PMID: 32501371)
-
Contributed Indexing :
-
Keywords: Daubechies wavelet; Fractional differential equations; Mathematical model; Novel coronavirus; Tight frame
-
Entry Date(s) :
-
Date Created: 20200825 Latest Revision: 20201201
-
Update Code :
-
20210301
-
PubMed Central ID :
-
PMC7386312
-
DOI :
-
10.1016/j.chaos.2020.110171
-
PMID :
-
32834652
-
-
Czasopismo naukowe
In this paper, we present a novel fractional order COVID-19 mathematical model by involving fractional order with specific parameters. The new fractional model is based on the well-known Atangana-Baleanu fractional derivative with non-singular kernel. The proposed system is developed using eight fractional-order nonlinear differential equations. The Daubechies framelet system of the model is used to simulate the nonlinear differential equations presented in this paper. The framelet system is generated based on the quasi-affine setting. In order to validate the numerical scheme, we provide numerical simulations of all variables given in the model.
(© 2020 Elsevier Ltd. All rights reserved.)