Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences.

Tytuł:
Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences.
Autorzy:
De Zoysa T; Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America.
Phizicky EM; Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America.
Źródło:
PLoS genetics [PLoS Genet] 2020 Aug 25; Vol. 16 (8), pp. e1008893. Date of Electronic Publication: 2020 Aug 25 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, c2005-
MeSH Terms:
RNA Processing, Post-Transcriptional*
RNA Stability*
Exoribonucleases/*metabolism
RNA, Transfer/*genetics
Schizosaccharomyces pombe Proteins/*metabolism
tRNA Methyltransferases/*metabolism
Amino Acids/metabolism ; Evolution, Molecular ; Exoribonucleases/genetics ; RNA, Transfer/metabolism ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/genetics ; tRNA Methyltransferases/genetics
References:
Science. 2014 Jul 25;345(6195):455-9. (PMID: 25061210)
Int J Mol Sci. 2018 Nov 24;19(12):. (PMID: 30477220)
Genes Dev. 2018 Oct 1;32(19-20):1309-1314. (PMID: 30228203)
Mol Gen Genet. 1994 Apr;243(1):1-8. (PMID: 8190062)
Clin Genet. 2018 Feb;93(2):374-377. (PMID: 28617965)
Nucleic Acids Res. 1988 Nov 25;16(22):10881-90. (PMID: 2849754)
Mol Cell Biol. 1997 Oct;17(10):6122-30. (PMID: 9315672)
Am J Respir Cell Mol Biol. 2020 Jul;63(1):118-131. (PMID: 32209028)
Nat Struct Mol Biol. 2012 Sep;19(9):900-5. (PMID: 22885326)
PLoS Biol. 2005 Jun;3(6):e189. (PMID: 15828860)
Nature. 1974 Aug 16;250(467):546-51. (PMID: 4602655)
J Biol Chem. 2002 Aug 23;277(34):30445-53. (PMID: 12058040)
Biochemistry. 1978 May 2;17(9):1622-8. (PMID: 247991)
J Biol Chem. 2005 Nov 11;280(45):37616-22. (PMID: 16162496)
Mol Cell Biol. 2002 Oct;22(20):7134-46. (PMID: 12242291)
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1829-E1838. (PMID: 29432178)
Yeast. 1998 Jul;14(10):943-51. (PMID: 9717240)
RNA. 2016 Apr;22(4):583-96. (PMID: 26857223)
Mol Cell. 2006 Jan 6;21(1):87-96. (PMID: 16387656)
J Biol Chem. 2004 May 28;279(22):22820-32. (PMID: 15010461)
Am J Med Genet A. 2018 Nov;176(11):2460-2465. (PMID: 30079490)
BMC Bioinformatics. 2010 Mar 15;11:129. (PMID: 20230624)
Nature. 1988 Nov 10;336(6195):179-81. (PMID: 3054566)
Elife. 2016 Apr 16;5:. (PMID: 27085088)
Genes Dev. 2010 Sep 1;24(17):1832-60. (PMID: 20810645)
EMBO J. 2000 Dec 1;19(23):6622-33. (PMID: 11101534)
Genes Dev. 2004 Jun 1;18(11):1227-40. (PMID: 15145828)
FEBS Lett. 2007 Apr 17;581(8):1599-604. (PMID: 17382321)
Biochemistry. 1998 Jan 6;37(1):344-51. (PMID: 9425056)
Genes Dev. 2011 Jun 1;25(11):1173-84. (PMID: 21632824)
PLoS Genet. 2013;9(8):e1003675. (PMID: 23935536)
RNA. 2013 Apr;19(4):461-6. (PMID: 23431330)
Genes Dev. 1998 Dec 1;12(23):3650-62. (PMID: 9851972)
RNA. 2020 Jan;26(1):29-43. (PMID: 31619505)
Eukaryot Cell. 2002 Feb;1(1):22-32. (PMID: 12455968)
PLoS Genet. 2019 Aug 29;15(8):e1008117. (PMID: 31465447)
Nat Struct Biol. 1994 Sep;1(9):580-2. (PMID: 7634096)
Cold Spring Harb Perspect Biol. 2018 Jul 2;10(7):. (PMID: 29440070)
Genetics. 2013 May;194(1):43-67. (PMID: 23633143)
Nucleic Acids Res. 2018 Nov 2;46(19):10302-10318. (PMID: 30247717)
Nat Struct Mol Biol. 2007 Jun;14(6):498-502. (PMID: 17496902)
Cell. 2014 Sep 11;158(6):1281-1292. (PMID: 25215487)
RNA. 2007 Aug;13(8):1245-55. (PMID: 17592039)
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11290-5. (PMID: 16040803)
Annu Rev Microbiol. 2005;59:407-50. (PMID: 16153175)
RNA. 2012 Oct;18(10):1921-33. (PMID: 22912484)
Mol Cell. 2011 Mar 4;41(5):600-8. (PMID: 21362555)
Mol Cell. 2018 Jul 19;71(2):244-255.e5. (PMID: 29983320)
RNA. 2012 Oct;18(10):1823-32. (PMID: 22919049)
FEBS Lett. 2014 Nov 28;588(23):4287-96. (PMID: 25304425)
Mol Cell Biol. 1997 Aug;17(8):4474-89. (PMID: 9234705)
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15548-55. (PMID: 26631744)
Nucleic Acids Res. 2018 Jan 4;46(D1):D303-D307. (PMID: 29106616)
J Biol Chem. 1996 Nov 15;271(46):29029-33. (PMID: 8910555)
RNA. 2015 Feb;21(2):188-201. (PMID: 25505024)
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8845-50. (PMID: 17502605)
Methods Enzymol. 1991;194:3-21. (PMID: 2005794)
Nat Struct Mol Biol. 2004 Dec;11(12):1251-2. (PMID: 15558050)
Mol Cell. 2000 Aug;6(2):269-79. (PMID: 10983975)
Mol Cell Biol. 2000 Apr;20(8):2706-17. (PMID: 10733573)
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21042-7. (PMID: 24297920)
Cell. 1992 Feb 7;68(3):585-96. (PMID: 1739968)
Biochim Biophys Acta Gene Regul Mech. 2019 Mar;1862(3):412-428. (PMID: 30529455)
EMBO J. 2002 Apr 2;21(7):1811-20. (PMID: 11927565)
J Biol Chem. 2008 Aug 8;283(32):22063-75. (PMID: 18502752)
RNA. 2018 Mar;24(3):410-422. (PMID: 29259051)
Science. 1974 Aug 2;185(4149):435-40. (PMID: 4601792)
Proc Natl Acad Sci U S A. 1983 May;80(9):2432-6. (PMID: 6189122)
Mol Biol Cell. 2003 Jan;14(1):214-29. (PMID: 12529438)
RNA. 2003 May;9(5):574-85. (PMID: 12702816)
Cell. 2005 Jun 3;121(5):713-24. (PMID: 15935758)
PLoS Genet. 2014 Sep 18;10(9):e1004639. (PMID: 25233213)
Nucleic Acids Res. 2013 Apr;41(8):4671-85. (PMID: 23471000)
EMBO J. 2001 Sep 3;20(17):4863-73. (PMID: 11532950)
Mol Cell. 2017 Dec 7;68(5):978-992.e4. (PMID: 29198561)
Cancer Immunol Immunother. 2020 Jan;69(1):81-94. (PMID: 31844909)
RNA. 2008 Apr;14(4):666-74. (PMID: 18314501)
Mol Cell. 2012 Nov 9;48(3):409-21. (PMID: 23000176)
Hum Mutat. 2020 Mar;41(3):600-607. (PMID: 31898845)
Nature. 2002 Jul 25;418(6896):387-91. (PMID: 12140549)
Yeast. 2017 Sep;34(9):371-382. (PMID: 28568773)
RNA. 2008 Jan;14(1):158-69. (PMID: 18025252)
Biochim Biophys Acta. 2014 Sep;1843(9):1948-68. (PMID: 24732012)
Science. 1999 Nov 5;286(5442):1146-9. (PMID: 10550050)
Nat Biotechnol. 2010 Jun;28(6):617-623. (PMID: 20473289)
Mol Cell. 2019 Jun 20;74(6):1278-1290.e9. (PMID: 31031083)
EMBO J. 1997 Dec 1;16(23):7184-95. (PMID: 9384595)
J Med Genet. 2014 Sep;51(9):581-6. (PMID: 25053765)
Nucleic Acids Res. 1979 Oct 25;7(4):1059-65. (PMID: 116193)
RNA. 2006 Mar;12(3):508-21. (PMID: 16431988)
Eur J Med Genet. 2018 Aug;61(8):468-472. (PMID: 29597095)
Nature. 2009 Apr 9;458(7239):784-8. (PMID: 19194460)
Mol Cell Biol. 2017 Oct 13;37(21):. (PMID: 28784718)
J Mol Biol. 1985 Jul 5;184(1):119-45. (PMID: 3897553)
PLoS One. 2017 Aug 3;12(8):e0182143. (PMID: 28771613)
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8451-8456. (PMID: 30962382)
Genome Biol. 2015 Sep 28;16:210. (PMID: 26416026)
Nucleic Acids Res. 2001 Mar 15;29(6):1326-33. (PMID: 11238999)
RNA. 2013 Feb;19(2):243-56. (PMID: 23249748)
Mol Cell Biol. 1991 May;11(5):2723-35. (PMID: 2017175)
Nucleic Acids Res. 2009 Nov;37(21):7268-80. (PMID: 19783824)
RNA. 2005 May;11(5):821-30. (PMID: 15811913)
Proc Natl Acad Sci U S A. 1984 Oct;81(20):6442-6. (PMID: 6387704)
Science. 2005 Jul 1;309(5731):140-2. (PMID: 15905365)
Mol Cell Biol. 2013 Apr;33(8):1561-70. (PMID: 23401851)
J Virol. 2011 Oct;85(19):9716-25. (PMID: 21795329)
PLoS One. 2015 Aug 26;10(8):e0129631. (PMID: 26308914)
Mol Cell. 2019 Jun 20;74(6):1304-1316.e8. (PMID: 31031084)
Genes Dev. 2008 May 15;22(10):1369-80. (PMID: 18443146)
Am J Hum Genet. 2012 May 4;90(5):847-55. (PMID: 22541559)
PLoS Genet. 2006 Dec;2(12):e221. (PMID: 17194224)
Genetics. 2004 Dec;168(4):1867-75. (PMID: 15611163)
Mol Cell Biol. 2008 May;28(10):3301-12. (PMID: 18332122)
RNA. 2012 Oct;18(10):1886-96. (PMID: 22895820)
Nucleic Acids Res. 2016 Jan 4;44(D1):D184-9. (PMID: 26673694)
EMBO J. 2005 May 4;24(9):1696-705. (PMID: 15861136)
EMBO J. 2011 Mar 2;30(5):882-93. (PMID: 21285948)
RNA. 2002 Oct;8(10):1253-66. (PMID: 12403464)
Mol Cell Biol. 2001 Jul;21(13):4347-68. (PMID: 11390663)
Mol Cell Biol. 1997 Mar;17(3):1298-313. (PMID: 9032257)
J Cell Sci. 2013 Jul 15;126(Pt 14):3010-20. (PMID: 23687372)
Toxics. 2019 Mar 25;7(1):. (PMID: 30934574)
Genes Dev. 2014 Aug 1;28(15):1721-32. (PMID: 25085423)
Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13624-9. (PMID: 21810989)
PLoS Genet. 2018 Mar 29;14(3):e1007288. (PMID: 29596413)
Eukaryot Cell. 2005 Nov;4(11):1785-93. (PMID: 16278445)
Biochemistry. 1987 Dec 29;26(26):8599-606. (PMID: 3327525)
Nature. 2011 Sep 21;478(7367):57-63. (PMID: 21937992)
Biochemistry. 1999 Oct 5;38(40):13338-46. (PMID: 10529209)
Genetics. 2000 Feb;154(2):787-801. (PMID: 10655230)
Cell Cycle. 2015;14(2):206-18. (PMID: 25483073)
J Med Genet. 2012 Jun;49(6):380-5. (PMID: 22577224)
Biochem Biophys Res Commun. 2018 Sep 26;504(1):89-95. (PMID: 30180947)
Structure. 2008 Jan;16(1):52-61. (PMID: 18184583)
Biochim Biophys Acta. 1982 Apr 26;697(1):31-40. (PMID: 6805514)
Grant Information:
R01 GM052347 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Amino Acids)
0 (Schizosaccharomyces pombe Proteins)
9014-25-9 (RNA, Transfer)
EC 2.1.1.- (tRNA Methyltransferases)
EC 2.1.1.33 (tRNA (guanine-N7-)-methyltransferase)
EC 3.1.- (Exoribonucleases)
EC 3.1.- (dhp1protein, S pombe)
Entry Date(s):
Date Created: 20200826 Date Completed: 20200923 Latest Revision: 20201113
Update Code:
20240105
PubMed Central ID:
PMC7473580
DOI:
10.1371/journal.pgen.1008893
PMID:
32841241
Czasopismo naukowe
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies