Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Tracking down carbon inputs underground from an arid zone Australian calcrete.

Tytuł:
Tracking down carbon inputs underground from an arid zone Australian calcrete.
Autorzy:
Saccò M; WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia.
Blyth AJ; WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia.
Humphreys WF; School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.; Collections and Research Centre, Western Australian Museum, Welshpool, WA, Australia.
Middleton JA; School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.
White NE; Trace and Environmental DNA Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
Campbell M; WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia.
Mousavi-Derazmahalleh M; Trace and Environmental DNA Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
Laini A; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy.
Hua Q; Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag Kirrawee DC, NSW, Australia.
Meredith K; Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag Kirrawee DC, NSW, Australia.
Cooper SJB; Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, South Australia, Australia.; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia, Australia.
Griebler C; Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.
Allard S; Curtin Water Quality Research Centre, Curtin University, Perth, WA, Australia.
Grierson P; School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.
Grice K; WA-Organic Isotope Geochemistry Centre, The Institute for Geoscience Research, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia.
Źródło:
PloS one [PLoS One] 2020 Aug 28; Vol. 15 (8), pp. e0237730. Date of Electronic Publication: 2020 Aug 28 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Carbon Cycle*
Carbon Isotopes/*analysis
Environmental Monitoring/*methods
Groundwater/*chemistry
Microbiota/*physiology
Soil/*chemistry
Australia ; Carbon Isotopes/metabolism ; DNA Barcoding, Taxonomic ; DNA, Bacterial/genetics ; DNA, Bacterial/isolation & purification ; Groundwater/microbiology ; RNA, Ribosomal, 16S/genetics ; Rain ; Salinity ; Soil Microbiology ; Spectrometry, Fluorescence
References:
Glob Chang Biol. 2015 May;21(5):1762-76. (PMID: 25472464)
Heredity (Edinb). 2013 Jul;111(1):77-85. (PMID: 23549336)
Biochim Biophys Acta. 2012 Dec;1824(12):1442-8. (PMID: 22750467)
BMC Microbiol. 2014 Sep 07;14:225. (PMID: 25194715)
Environ Microbiol. 2005 Aug;7(8):1248-59. (PMID: 16011762)
Sci Total Environ. 2015 Nov 1;532:337-43. (PMID: 26081736)
Nat Commun. 2017 Nov 24;8(1):1771. (PMID: 29176641)
Appl Environ Microbiol. 1990 Jun;56(6):1865-74. (PMID: 16348227)
Nat Biotechnol. 2013 Sep;31(9):814-21. (PMID: 23975157)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Nature. 2014 May 29;509(7502):600-3. (PMID: 24847888)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
Naturwissenschaften. 2009 Sep;96(9):1035-42. (PMID: 19488732)
Appl Environ Microbiol. 2004 Mar;70(3):1385-92. (PMID: 15006757)
Mol Biotechnol. 2012 Jan;50(1):39-48. (PMID: 21656086)
Front Microbiol. 2018 Jun 08;9:1234. (PMID: 29937762)
Environ Microbiol. 2019 Jan;21(1):34-49. (PMID: 30246449)
J Bacteriol. 2011 May;193(10):2517-26. (PMID: 21421758)
Sci Total Environ. 2012 Jan 1;414:456-69. (PMID: 22104381)
J Bacteriol. 1998 Aug;180(16):4278-86. (PMID: 9696779)
Environ Sci Technol. 2002 Feb 15;36(4):742-6. (PMID: 11878392)
Sci Total Environ. 2019 Apr 20;662:963-977. (PMID: 30795483)
PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
Sci Total Environ. 2019 Feb 20;652:1252-1260. (PMID: 30586811)
Appl Spectrosc. 2009 Aug;63(8):936-40. (PMID: 19678992)
Bioinformatics. 2014 Nov 1;30(21):3123-4. (PMID: 25061070)
Int J Syst Evol Microbiol. 2014 Nov;64(Pt 11):3709-3716. (PMID: 25106926)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D511-6. (PMID: 16381923)
Ecology. 2016 Jun;97(6):1530-42. (PMID: 27459783)
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38. (PMID: 10461381)
FEMS Microbiol Rev. 2010 Sep;34(5):658-84. (PMID: 20412307)
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22. (PMID: 20534432)
Chemosphere. 2005 May;59(7):983-96. (PMID: 15823332)
Nat Commun. 2016 Apr 07;7:11237. (PMID: 27052662)
Nat Commun. 2017 Nov 28;8(1):1835. (PMID: 29180666)
Appl Environ Microbiol. 2019 Feb 20;85(5):. (PMID: 30578263)
Nature. 2000 Nov 9;408(6809):184-7. (PMID: 11089968)
Appl Environ Microbiol. 2011 Mar;77(6):1925-36. (PMID: 21216907)
Genome Biol Evol. 2019 Apr 1;11(4):1166-1177. (PMID: 30903144)
Water Res. 2020 Feb 1;169:115201. (PMID: 31675607)
PLoS One. 2016 May 19;11(5):e0154519. (PMID: 27195702)
Chemosphere. 1999 Jan;38(1):45-50. (PMID: 10903090)
Environ Sci Technol. 2014 Aug 19;48(16):9170-8. (PMID: 25073729)
Environ Manage. 2016 Feb;57(2):432-49. (PMID: 26404433)
Sci Total Environ. 2017 Dec 31;607-608:771-785. (PMID: 28711007)
Substance Nomenclature:
0 (Carbon Isotopes)
0 (DNA, Bacterial)
0 (RNA, Ribosomal, 16S)
0 (Soil)
Entry Date(s):
Date Created: 20200829 Date Completed: 20201014 Latest Revision: 20240329
Update Code:
20240329
PubMed Central ID:
PMC7454941
DOI:
10.1371/journal.pone.0237730
PMID:
32857799
Czasopismo naukowe
Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies