Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Double VEGF/HGF Gene Therapy in Critical Limb Ischemia Complicated by Diabetes Mellitus.

Tytuł:
Double VEGF/HGF Gene Therapy in Critical Limb Ischemia Complicated by Diabetes Mellitus.
Autorzy:
Barć P; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Antkiewicz M; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland. .
Śliwa B; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Frączkowska K; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Guziński M; Department of Radiology, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Dawiskiba T; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Małodobra-Mazur M; Molecular Techniques Unit, Wroclaw Medical University, Wroclaw, Poland.
Witkiewicz W; Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland.
Kupczyńska D; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Strzelec B; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Janczak D; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Skóra JP; Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki Medical University Hospital, Wroclaw Medical University, Wroclaw, Poland.
Źródło:
Journal of cardiovascular translational research [J Cardiovasc Transl Res] 2021 Jun; Vol. 14 (3), pp. 409-415. Date of Electronic Publication: 2020 Sep 01.
Typ publikacji:
Journal Article; Randomized Controlled Trial; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Springer
MeSH Terms:
Genetic Therapy*
Neovascularization, Physiologic*
Diabetes Mellitus, Type 2/*therapy
Hepatocyte Growth Factor/*genetics
Ischemia/*therapy
Peripheral Arterial Disease/*therapy
Vascular Endothelial Growth Factor A/*genetics
Aged ; Aged, 80 and over ; Biomarkers/blood ; Blood Glucose/metabolism ; Critical Illness ; Diabetes Mellitus, Type 2/blood ; Diabetes Mellitus, Type 2/genetics ; Diabetes Mellitus, Type 2/physiopathology ; Female ; Functional Status ; Humans ; Internal Ribosome Entry Sites/genetics ; Ischemia/blood ; Ischemia/genetics ; Ischemia/physiopathology ; Male ; Middle Aged ; Peripheral Arterial Disease/blood ; Peripheral Arterial Disease/genetics ; Peripheral Arterial Disease/physiopathology ; Plasmids/genetics ; Poland ; Recovery of Function ; Time Factors ; Treatment Outcome ; Vascular Endothelial Growth Factor A/blood
References:
Amann, B., Luedemann, C., Ratei, R., & Schmidt-Lucke, J. A. (2009). Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplantation, 18(3), 371–380. https://doi.org/10.3727/096368909788534942 . (PMID: 10.3727/09636890978853494219500466)
Barć, P., Antkiewicz, M., Śliwa, B., Baczyńska, D., Witkiewicz, W., & Skóra, J. P. (2019). Treatment of critical limb ischemia by pIRES/VEGF165/HGF administration. Annals of Vascular Surgery, 60, 346–354. https://doi.org/10.1016/j.avsg.2019.03.013 . (PMID: 10.1016/j.avsg.2019.03.01331200059)
Davies, M. G. (2012). Critical limb ischemia: cell and molecular therapies for limb salvage. Methodist DeBakey Cardiovascular Journal, 8(4), 20–27. https://doi.org/10.14797/mdcj-8-4-20 . (PMID: 10.14797/mdcj-8-4-20233421843549646)
Fabiani, I., Calogero, E., Pugliese, N. R., Di Stefano, R., Nicastro, I., Buttitta, F., et al. (2018). Critical limb ischemia: a practical up-to-date review. Angiology, 69(6), 465–474. https://doi.org/10.1177/0003319717739387 . (PMID: 10.1177/000331971773938729161885)
Farber, A., & Eberhardt, R. T. (2016). The current state of critical limb ischemia: a systematic review. JAMA Surgery, 151(11), 1070–1077. https://doi.org/10.1001/jamasurg.2016.2018 . (PMID: 10.1001/jamasurg.2016.201827551978)
Fard, B., Dijkstra, P. U., Voesten, H. G. J. M., & Geertzen, J. H. B. (2020). Mortality, reamputation, and preoperative comorbidities in patients undergoing dysvascular lower limb amputation. Annals of Vascular Surgery, 64, 228–238. https://doi.org/10.1016/j.avsg.2019.09.010 . (PMID: 10.1016/j.avsg.2019.09.01031629839)
Freisinger, E., Malyar, N. M., Reinecke, H., & Lawall, H. (2017). Impact of diabetes on outcome in critical limb ischemia with tissue loss: a large-scaled routine data analysis. Cardiovascular Diabetology, 16(1), 41. https://doi.org/10.1186/s12933-017-0524-8 . (PMID: 10.1186/s12933-017-0524-8283767975379505)
Hartikainen, J., Hassinen, I., Hedman, A., Kivelä, A., Saraste, A., Knuuti, J., et al. (2017). Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. European Heart Journal, 38(33), 2547–2555. https://doi.org/10.1093/eurheartj/ehx352 . (PMID: 10.1093/eurheartj/ehx352289034765837555)
Hedman, M., Muona, K., Hedman, A., Kivelä, A., Syvänne, M., Eränen, J., et al. (2009). Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Therapy, 16(5), 629–634. https://doi.org/10.1038/gt.2009.4 . (PMID: 10.1038/gt.2009.419212427)
Inampudi, C., Akintoye, E., Ando, T., & Briasoulis, A. (2018). Angiogenesis in peripheral arterial disease. Current Opinion in Pharmacology, 39, 60–67. https://doi.org/10.1016/j.coph.2018.02.011 . (PMID: 10.1016/j.coph.2018.02.01129529399)
Jazwa, A., Florczyk, U., Grochot-Przeczek, A., Krist, B., Loboda, A., Jozkowicz, A., et al. (2016). Limb ischemia and vessel regeneration: is there a role for VEGF? Vascular Pharmacology, 86, 18–30. https://doi.org/10.1016/j.vph.2016.09.003 . (PMID: 10.1016/j.vph.2016.09.00327620809)
Johnson, T., Zhao, L., Manuel, G., Taylor, H., & Liu, D. (2019). Approaches to therapeutic angiogenesis for ischemic heart disease. Journal of Molecular Medicine (Berlin, Germany), 97(2), 141–151. https://doi.org/10.1007/s00109-018-1729-3 . (PMID: 10.1007/s00109-018-1729-3)
Kaminsky, S. M., Rosengart, T. K., Rosenberg, J., Chiuchiolo, M. J., van de Graaf, B., Sondhi, D., et al. (2013). Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Human Gene Therapy, 24(11), 948–963. https://doi.org/10.1089/hum.2013.2516 . (PMID: 10.1089/hum.2013.251624164242)
Kastrup, J., Jørgensen, E., Rück, A., Tägil, K., Glogar, D., Ruzyllo, W., et al. (2005). Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris a randomized double-blind placebo-controlled study: The Euroinject One trial. Journal of the American College of Cardiology, 45(7), 982–988. https://doi.org/10.1016/j.jacc.2004.12.068 . (PMID: 10.1016/j.jacc.2004.12.06815808751)
Kitrou, P., Karnabatidis, D., Brountzos, E., Katsanos, K., Reppas, L., & Spiliopoulos, S. (2017). Gene-based therapies in patients with critical limb ischemia. Expert Opinion on Biological Therapy, 17(4), 449–456. https://doi.org/10.1080/14712598.2017.1289170 . (PMID: 10.1080/14712598.2017.128917028133976)
Kukuła, K., Chojnowska, L., Dąbrowski, M., Witkowski, A., Chmielak, Z., Skwarek, M., et al. (2011). Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). American Heart Journal, 161(3), 581–589. https://doi.org/10.1016/j.ahj.2010.11.023 . (PMID: 10.1016/j.ahj.2010.11.02321392615)
Madonna, R., & Rokosh, G. (2012). Insights into gene therapy for critical limb ischemia: the devil is in the details. Vascular Pharmacology, 57(1), 10–14. https://doi.org/10.1016/j.vph.2012.05.001 . (PMID: 10.1016/j.vph.2012.05.00122580542)
Makino, H., Aoki, M., Hashiya, N., Yamasaki, K., Azuma, J., Sawa, Y., et al. (2012). Long-term follow-up evaluation of results from clinical trial using hepatocyte growth factor gene to treat severe peripheral arterial disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(10), 2503–2509. https://doi.org/10.1161/ATVBAHA.111.244632 . (PMID: 10.1161/ATVBAHA.111.24463222904270)
Mitchell, A. C., Briquez, P. S., Hubbell, J. A., & Cochran, J. R. (2016). Engineering growth factors for regenerative medicine applications. Acta Biomaterialia, 30, 1–12. https://doi.org/10.1016/j.actbio.2015.11.007 . (PMID: 10.1016/j.actbio.2015.11.00726555377)
Muona, K., Mäkinen, K., Hedman, M., Manninen, H., & Ylä-Herttuala, S. (2012). 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene Therapy, 19(4), 392–395. https://doi.org/10.1038/gt.2011.109 . (PMID: 10.1038/gt.2011.10921776026)
Rosengart, T. K., Bishawi, M. M., Halbreiner, M. S., Fakhoury, M., Finnin, E., Hollmann, C., et al. (2013). Long-term follow-up assessment of a phase 1 trial of angiogenic gene therapy using direct intramyocardial administration of an adenoviral vector expressing the VEGF121 cDNA for the treatment of diffuse coronary artery disease. Human Gene Therapy, 24(2), 203–208. https://doi.org/10.1089/hum.2012.137 . (PMID: 10.1089/hum.2012.13723137122)
Sadakierska-Chudy, A., Baczyńska, D., Skóra, J. P., Gębarowska, E., Pupka, A., & Dorobisz, T. (2008). Transfection efficiency and cytotoxicity of transfection reagents in human umbilical vein endothelial cells. Advances in Clinical and Experimental Medicine, 6, 625–634.
Shigematsu, H., Yasuda, K., Sasajima, T., Takano, T., Miyata, T., Ohta, T., et al. (2011). Transfection of human HGF plasmid DNA improves limb salvage in Buerger's disease patients with critical limb ischemia. International angiology : a journal of the International Union of Angiology, 30(2), 140–149.
Vempati, P., Popel, A. S., & Mac Gabhann, F. (2014). Extracellular regulation of VEGF: Isoforms, proteolysis, and vascular patterning. Cytokine & Growth Factor Reviews, 25(1), 1–19. https://doi.org/10.1016/j.cytogfr.2013.11.002 . (PMID: 10.1016/j.cytogfr.2013.11.002)
Wang, L.-S., Wang, H., Zhang, Q.-L., Yang, Z.-J., Kong, F.-X., & Wu, C.-T. (2018). Hepatocyte growth factor gene therapy for ischemic diseases. Human Gene Therapy, 29(4), 413–423. https://doi.org/10.1089/hum.2017.217 . (PMID: 10.1089/hum.2017.21729409352)
Wieczór, R., Rość, D., Wieczór, A. M., & Kulwas, A. (2019). VASCULAR-1 and VASCULAR-2 as a new potential angiogenesis and endothelial dysfunction markers in peripheral arterial disease. Clinical and Applied Thrombosis/Hemostasis: Official Journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, 25, 1076029619877440. https://doi.org/10.1177/1076029619877440 . (PMID: 10.1177/1076029619877440)
Ylä-Herttuala, S. (2019). Gene therapy of critical limb ischemia enters clinical use. Molecular therapy : the journal of the American Society of Gene Therapy, 27(12), 2053. https://doi.org/10.1016/j.ymthe.2019.11.001 . (PMID: 10.1016/j.ymthe.2019.11.001)
Ylä-Herttuala, S., Bridges, C., Katz, M. G., & Korpisalo, P. (2017). Angiogenic gene therapy in cardiovascular diseases: dream or vision? European Heart Journal, 38(18), 1365–1371. https://doi.org/10.1093/eurheartj/ehw547 . (PMID: 10.1093/eurheartj/ehw547280738655837788)
Contributed Indexing:
Keywords: Critical limb ischemia; Diabetes mellitus; Gene therapy; HGF; VEGF
Substance Nomenclature:
0 (Biomarkers)
0 (Blood Glucose)
0 (HGF protein, human)
0 (Internal Ribosome Entry Sites)
0 (VEGFA protein, human)
0 (Vascular Endothelial Growth Factor A)
67256-21-7 (Hepatocyte Growth Factor)
Entry Date(s):
Date Created: 20200903 Date Completed: 20220202 Latest Revision: 20221108
Update Code:
20240104
PubMed Central ID:
PMC8219552
DOI:
10.1007/s12265-020-10066-9
PMID:
32875492
Czasopismo naukowe
Critical leg ischemia (CLI) complicated by diabetes mellitus (DM), which is a very common and dangerous disease, represents the ultimate stage of peripheral arterial disease. Patients are treated with antiplatelet drugs, statins and limb revascularization, but a significant number of patients are not candidate for revascularization. Literature shows that in such cases, gene therapy could be a perfect therapeutic option. The aim of our study was to evaluate efficacy of double vascular endothelial growth factor/hepatocyte growth factor (VEGF/HGF) gene therapy in patients with CLI complicated by DM. We observed that 90 days after administration, serum level of VEGF and ankle-brachial index increased significantly (p < 0.001) and rest pain decreased significantly compared with the control group (p < 0.002). Moreover considerable improvement in vascularization was observed in computed tomography angiography (P = 0.04). Based on the results of this study, we suggest that the therapy with pIRES/VEGF165/HGF bicistronic plasmid administration is a safe and effective method of treatment of patients with both CLI and DM. Graphical abstract.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies