Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Magnitude of sex differences in visual search varies with target eccentricity.

Tytuł:
Magnitude of sex differences in visual search varies with target eccentricity.
Autorzy:
English MCW; School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia. .
Maybery MT; School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
Visser TAW; School of Psychological Science, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
Źródło:
Psychonomic bulletin & review [Psychon Bull Rev] 2021 Feb; Vol. 28 (1), pp. 178-188.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2013-> : [New York : Springer]
Original Publication: Austin, TX : Psychonomic Society, Inc., c1994-
MeSH Terms:
Functional Laterality*
Reaction Time*
Sex Characteristics*
Spatial Processing*
Visual Perception*
Adult ; Female ; Humans ; Male ; Task Performance and Analysis ; Visual Fields ; Young Adult
References:
Anstis, S. M. (1974). A chart demonstrating variations in acuity with retinal position. Vision Research, 14(7), 589–592. https://doi.org/10.1016/0042-6989(74)90049-2. (PMID: 10.1016/0042-6989(74)90049-24419807)
Behrmann, M., Ebert, P., & Black, S. E. (2004). Hemispatial neglect and visual search: A large scale analysis. Cortex, 40(2), 247–263. https://doi.org/10.1016/S0010-9452(08)70120-5. (PMID: 10.1016/S0010-9452(08)70120-515156783)
Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18(4–5), 491–498. https://doi.org/10.1016/0028-3932(80)90151-7. (PMID: 10.1016/0028-3932(80)90151-76777712)
Brand, J. E., Todhunter, S., & Jervis, J. (2017). Digital Australia 2018. https://www.igea.net/wp-content/uploads/2017/07/Digital-Australia-2018-DA18-Final-1.pdf.
Cheal, M., & Lyon, D. (1989). Attention Effects on Form Discrimination at Different Eccentricities. The Quarterly Journal of Experimental Psychology Section A, 41(4), 719–746. https://doi.org/10.1080/14640748908402391. (PMID: 10.1080/14640748908402391)
Dundas, E. M., Gastgeb, H., & Strauss, M. S. (2012). Left visual field biases when infants process faces: a comparison of infants at high- and low-risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 42(12), 2659–2668. https://doi.org/10.1007/s10803-012-1523-y. (PMID: 10.1007/s10803-012-1523-y225277003408549)
Dye, M. W. G., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321–326. https://doi.org/10.1111/j.1467-8721.2009.01660.x. (PMID: 10.1111/j.1467-8721.2009.01660.x204854532871325)
Efron, R., Yund, E. W., & Nichols, D. R. (1987). Scanning the visual field without eye movements—A sex difference. Neuropsychologia, 25(4), 637–644. https://doi.org/10.1016/0028-3932(87)90054-6. (PMID: 10.1016/0028-3932(87)90054-63658146)
Efron, R., Yund, E. W., & Nichols, D. R. (1990a). Detectability as a function of target location: Effects of spatial configuration. Brain and Cognition, 12(1), 102–116. https://doi.org/10.1016/0278-2626(90)90007-B. (PMID: 10.1016/0278-2626(90)90007-B2297428)
Efron, R., Yund, E. W., & Nichols, D. R. (1990b). Serial processing of visual spatial patterns in a search paradigm. Brain and Cognition, 12(1), 17–41. https://doi.org/10.1016/0278-2626(90)90002-6. (PMID: 10.1016/0278-2626(90)90002-62297433)
Ellis, A. W., & Brysbaert, M. (2010). Split fovea theory and the role of the two cerebral hemispheres in reading: A review of the evidence. Neuropsychologia, 48(2), 353–365. https://doi.org/10.1016/j.neuropsychologia.2009.08.021. (PMID: 10.1016/j.neuropsychologia.2009.08.02119720073)
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146. (PMID: 10.3758/BF031931461769534317695343)
Ferber, S., & Karnath, H. O. (2001). How to assess spatial neglect - Line bisection or cancellation tasks? Journal of Clinical and Experimental Neuropsychology, 23(5), 599–607. https://doi.org/10.1076/jcen.23.5.599.1243. (PMID: 10.1076/jcen.23.5.599.124311778637)
Hahn, N., Jansen, P., & Heil, M. (2010). Preschoolers’ mental rotation of letters: Sex differences in hemispheric asymmetry. Cognitive Neuroscience, 1(4), 261–267. https://doi.org/10.1080/17588928.2010.485248. (PMID: 10.1080/17588928.2010.48524824168379)
Halpern, D. F. (2012). Empirical Evidence For Cognitive Sex Differences. In Sex differences in cognitive abilities (4th ed.). Psychology Press, Taylor and Francis Group.
Hattie, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. Routledge Ltd. https://doi.org/10.4324/9780203887332.
Hausmann, M. (2017). Why sex hormones matter for neuroscience: A very short review on sex, sex hormones, and functional brain asymmetries. Journal of Neuroscience Research, 95(1–2), 40–49. https://doi.org/10.1002/jnr.23857. (PMID: 10.1002/jnr.2385727870404)
Heilman, K. M. (1995). Attentional asymmetries. In R. J. Davidson & K. Hugdahl (Eds.), Brain Asymmetry (pp. 217–234). MIT Press.
Heilman, K. M., Watson, R. T., & Valenstein, E. (2003). Neglect and related disorders. In K. M. Heilman & E. Valenstein (Eds.), Clinical Neuropsychology (pp. 279–336). Oxford University Press.
Hellige, J. B. (1993). Hemispheric Asymmetry: What’s Right and What’s Left (S. M. Kosslyn (ed.)). Harvard University Press.
Hirnstein, M., Hugdahl, K., & Hausmann, M. (2018). Cognitive sex differences and hemispheric asymmetry: A critical review of 40 years of research. Laterality: Asymmetries of Body, Brain and Cognition, 0(0), 1–49. https://doi.org/10.1080/1357650X.2018.1497044. (PMID: 10.1080/1357650X.2018.1497044)
Holcombe, A. O., Nguyen, E. H. L., & Goodbourn, P. T. (2017). Implied reading direction and prioritization of letter encoding. Journal of Experimental Psychology: General, 146(10), 1420–1437. https://doi.org/10.1037/xge0000357. (PMID: 10.1037/xge0000357)
Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581–592. https://doi.org/10.1037/0003-066X.60.6.581. (PMID: 10.1037/0003-066X.60.6.581)
Jäncke, L. (2018). Sex/gender differences in cognition, neurophysiology, and neuroanatomy. F1000Research, 7, 805. https://doi.org/10.12688/f1000research.13917.1. (PMID: 10.12688/f1000research.13917.1)
Jeffreys, H. (1961). Theory of Probability (3rd Ed.). Oxford University Press.
Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110. https://doi.org/10.1016/S0028-3932(99)00045-7. (PMID: 10.1016/S0028-3932(99)00045-710617294)
Jordan, T. R., Patching, G. R., & Thomas, S. M. (2003). Assessing the role of hemispheric specialisation, serial-position processing, and retinal eccentricity in lateralised word recognition. Cognitive Neuropsychology, 20(1), 49–71. https://doi.org/10.1080/02643290244000185. (PMID: 10.1080/0264329024400018520957564)
Levy, J. (1972). Lateral specialization of the human brain: Behavioral manifestations and possible evolutionary basis. In J. A. Kiger (Ed.), The Biology of Behavior: Proceedings of the thirty-second annual biology collquium. Oregon State University Press.
Levy, J. (1978). Lateral differences in the human brain in cognition and behavioral control. In P. Buser & A. Rougeul-Buser (Eds.), Cerebral correlates of conscious experimence (pp. 285–298). North Holland Publishing Company.
Liesefeld, H. R., & Janczyk, M. (2019). Combining speed and accuracy to control for speed-accuracy trade-offs(?). Behavior Research Methods, 51(1), 40–60. https://doi.org/10.3758/s13428-018-1076-x. (PMID: 10.3758/s13428-018-1076-x30022459)
Nicholls, M. E. R., Bradshaw, J. L., & Mattingley, J. B. (1999). Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia, 37(3), 307–314. https://doi.org/10.1016/S0028-3932(98)00074-8. (PMID: 10.1016/S0028-3932(98)00074-810199644)
Nicholls, M. E. R., Hobson, A., Petty, J., Churches, O., & Thomas, N. A. (2017). The effect of cerebral asymmetries and eye scanning on pseudoneglect for a visual search task. Brain and Cognition, 111, 134–143. https://doi.org/10.1016/j.bandc.2016.11.006. (PMID: 10.1016/j.bandc.2016.11.00627923149)
Nicholls, M. E. R., Roden, S., Thomas, N. A, Loetscher, T., Spence, C. J., & Forte, J. D. (2014). Close to me: the effect of asymmetrical environments on spatial attention. In Ergonomics (Vol. 57, Issue February, pp. 876–885). Taylor & Francis. https://doi.org/10.1080/00140139.2014.899633.
Ocklenburg, S., & Güntürkün, O. (2017). The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries. Academic Press.
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4. (PMID: 10.1016/0028-3932(71)90067-4)
Poynter, W., & Roberts, C. (2012). Hemispheric asymmetries in visual search. Laterality, 17(6), 711–726. https://doi.org/10.1080/1357650X.2011.626558. (PMID: 10.1080/1357650X.2011.62655823098199)
Ransley, K., Goodbourn, P. T., Nguyen, E. H. L., Moustafa, A. A., & Holcombe, A. O. (2018). Reading Direction Influences Lateral Biases in Letter Processing. Journal of Experimental Psychology: Learning Memory and Cognition, 44(10), 1678–1686. https://doi.org/10.1037/xlm0000540. (PMID: 10.1037/xlm0000540)
Rilea, S. L. (2008). Sex and hemisphere differences when mentally rotating meaningful and meaningless stimuli. Laterality, 13(3), 217–233. https://doi.org/10.1080/13576500701809846. (PMID: 10.1080/1357650070180984618449839)
Rossion, B., Dricot, L., Devolder, A., Bodart, J.-M., Crommelinck, M., Gelder, B. de, & Zoontjes, R. (2000). Hemispheric Asymmetries for Whole-Based and Part-Based Face Processing in the Human Fusiform Gyrus. Journal of Cognitive Neuroscience, 12(5), 793–802. https://doi.org/10.1162/089892900562606. (PMID: 10.1162/08989290056260611054921)
Saevarsson, S., Kristjánsson, Á., Hildebrandt, H., & Halsband, U. (2009). Prism adaptation improves visual search in hemispatial neglect. Neuropsychologia, 47(3), 717–725. https://doi.org/10.1016/j.neuropsychologia.2008.11.026. (PMID: 10.1016/j.neuropsychologia.2008.11.02619100755)
Sala, G., Tatlidil, K. S., & Gobet, F. (2018). Video game training does not enhance cognitive ability: A comprehensive meta-analytic investigation. Psychological Bulletin, 144(2), 111–139. https://doi.org/10.1037/bul0000139. (PMID: 10.1037/bul000013929239631)
Shaqiri, A., Roinishvili, M., Grzeczkowski, L., Chkonia, E., Pilz, K., Mohr, C., Brand, A., Kunchulia, M., & Herzog, M. H. (2018). Sex-related differences in vision are heterogeneous. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-25298-8. (PMID: 10.1038/s41598-018-25298-8)
Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51(3), 300–304. https://doi.org/10.1037/h0020586. (PMID: 10.1037/h0020586)
Solianik, R., Brazaitis, M., & Skurvydas, A. (2016). Sex-related differences in attention and memory. Medicina (Lithuania), 52(6), 372–377. https://doi.org/10.1016/j.medici.2016.11.007. (PMID: 10.1016/j.medici.2016.11.007)
Stoet, G. (2011). Sex differences in search and gathering skills. Evolution and Human Behavior, 32(6), 416–422. https://doi.org/10.1016/j.evolhumbehav.2011.03.001. (PMID: 10.1016/j.evolhumbehav.2011.03.001)
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5. (PMID: 10.1016/0010-0285(80)90005-57351125)
Vangkilde, S., & Habekost, T. (2010). Finding Wally: Prism adaptation improves visual search in chronic neglect. Neuropsychologia, 48(7), 1994–2004. https://doi.org/10.1016/j.neuropsychologia.2010.03.020. (PMID: 10.1016/j.neuropsychologia.2010.03.02020361988)
Vanston, J. E., & Strother, L. (2017). Sex differences in the human visual system. Journal of Neuroscience Research, 95(1–2), 617–625. https://doi.org/10.1002/jnr.23895. (PMID: 10.1002/jnr.2389527870438)
Verleger, R., & Śmigasiewicz, K. (2015). Consciousness wanted, attention found: Reasons for the advantage of the left visual field in identifying T2 among rapidly presented series. Consciousness and Cognition, 35, 260–273. https://doi.org/10.1016/j.concog.2015.02.013. (PMID: 10.1016/j.concog.2015.02.01325777355)
Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. https://doi.org/10.3758/BF03200774. (PMID: 10.3758/BF03200774)
Yund, E. W., Efron, R., & Nichols, D. R. (1990a). Detectability as a function of spatial location: Effects of selective attention. Brain and Cognition, 12(1), 42–54. https://doi.org/10.1016/0278-2626(90)90003-7. (PMID: 10.1016/0278-2626(90)90003-72297434)
Yund, E. W., Efron, R., & Nichols, D. R. (1990b). Detectability gradients as a function of target location. Brain and Cognition, 12(1), 1–16. https://doi.org/10.1016/0278-2626(90)90001-5. (PMID: 10.1016/0278-2626(90)90001-52297427)
Zell, E., Krizan, Z., & Teeter, S. R. (2015). Evaluating gender similarities and differences using metasynthesis. American Psychologist, 70(1), 10–20. https://doi.org/10.1037/a0038208. (PMID: 10.1037/a0038208)
Grant Information:
DP190103286 Australian Research Council
Contributed Indexing:
Keywords: Lateralization; Sex differences; Visual perception; Visual search
Entry Date(s):
Date Created: 20200903 Date Completed: 20210603 Latest Revision: 20210603
Update Code:
20240104
DOI:
10.3758/s13423-020-01796-7
PMID:
32875533
Czasopismo naukowe
A recent meta-analysis found no support for the popular theory that superior visuospatial ability in males is attributable to their relatively greater hemispheric asymmetry of neural functions. However, the issue of whether differences in hemispheric laterality could account for differences in visual perception between the sexes has not been systematically investigated. Visual search is an ideal task for such an investigation, as target-position can be systematically varied across the visual field allowing for a detailed analysis of how performance varies with visual field and eccentricity. We recruited 539 undergraduate participants (150 male) and administered a visual search task that required them to identify the presence of a uniquely-oriented triangle amongst distractors. Crucially, target location was systematically varied over the visual field across trials. Males displayed both superior accuracy and shorter reaction time when targets were presented in the left visual field, whilst sex differences systematically diminished when the target was located further rightward. These behavioural results are in line with the notion that greater hemispheric asymmetry in males influences task performance to a varying extent across the visual field, and illustrates the importance of considering task parameters and the influence of sex in behavioural research.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies