Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene.

Tytuł:
Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene.
Autorzy:
Lin YT; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
Chiweshe S; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
McCormick D; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
Raper A; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
Wickenhagen A; MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
DeFillipis V; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America.
Gaunt E; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
Simmonds P; Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Wilson SJ; MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom.
Grey F; Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom.
Źródło:
PLoS pathogens [PLoS Pathog] 2020 Sep 04; Vol. 16 (9), pp. e1008844. Date of Electronic Publication: 2020 Sep 04 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, c2005-
MeSH Terms:
Alternative Splicing*
CpG Islands*
Gene Expression Regulation, Viral*
Virus Replication*
Cytomegalovirus/*physiology
Cytomegalovirus Infections/*metabolism
RNA-Binding Proteins/*metabolism
Repressor Proteins/*metabolism
Cell Line ; Cytomegalovirus Infections/genetics ; Cytomegalovirus Infections/pathology ; Humans ; Immediate-Early Proteins ; RNA-Binding Proteins/genetics ; Repressor Proteins/genetics ; Transcription Factors/genetics ; Transcription Factors/metabolism ; Tripartite Motif Proteins/genetics ; Tripartite Motif Proteins/metabolism ; Ubiquitin-Protein Ligases/genetics ; Ubiquitin-Protein Ligases/metabolism
References:
World J Hepatol. 2014 Jun 27;6(6):370-83. (PMID: 25018848)
J Virol. 2004 Dec;78(23):12781-7. (PMID: 15542630)
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):151-6. (PMID: 17185417)
Virol J. 2015 Dec 01;12:203. (PMID: 26625984)
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24303-24309. (PMID: 31719195)
Science. 2002 Sep 6;297(5587):1703-6. (PMID: 12215647)
J Virol. 1991 Feb;65(2):897-903. (PMID: 1846204)
J Gen Virol. 1989 Apr;70 ( Pt 4):837-55. (PMID: 2732708)
mBio. 2016 Nov 15;7(6):. (PMID: 27935834)
Nature. 2011 Apr 28;472(7344):481-5. (PMID: 21478870)
J Virol. 2006 Jan;80(2):1032-7. (PMID: 16379004)
PLoS Pathog. 2015 Dec 08;11(12):e1005324. (PMID: 26646986)
J Virol. 2003 Nov;77(21):11555-62. (PMID: 14557641)
J Immunol. 2008 Apr 1;180(7):4965-77. (PMID: 18354222)
Int Rev Immunol. 2011 Feb;30(1):16-34. (PMID: 21235323)
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3840-5. (PMID: 16497831)
J Gen Virol. 2014 Mar;95(Pt 3):659-670. (PMID: 24337170)
Nat Immunol. 2011 Jan;12(1):37-44. (PMID: 21102435)
PLoS Genet. 2008 Jan;4(1):e21. (PMID: 18225958)
Nature. 1978 Aug 24;274(5673):775-80. (PMID: 355893)
J Virol. 1995 Sep;69(9):5391-400. (PMID: 7636984)
Pediatr Transplant. 2013 Sep;17(6):499-509. (PMID: 23890075)
Cell Host Microbe. 2016 Sep 14;20(3):392-405. (PMID: 27631702)
Nucleic Acids Res. 2014 Apr;42(7):4527-45. (PMID: 24470146)
J Virol. 2016 Aug 12;90(17):7789-97. (PMID: 27334590)
J Virol. 2019 Sep 30;93(20):. (PMID: 31375575)
J Virol. 2001 Dec;75(24):12319-30. (PMID: 11711622)
Am J Transplant. 2013 Feb;13 Suppl 3:24-40; quiz 40. (PMID: 23347212)
J Virol. 2018 Jun 13;92(13):. (PMID: 29695422)
Nature. 2017 Oct 5;550(7674):124-127. (PMID: 28953888)
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15834-9. (PMID: 21876179)
Thorax. 2016 Sep;71(9):820-9. (PMID: 27118812)
J Biol Chem. 2006 Feb 17;281(7):3989-94. (PMID: 16352599)
PLoS Pathog. 2017 Jan 6;13(1):e1006145. (PMID: 28060952)
PLoS Pathog. 2016 Apr 08;12(4):e1005546. (PMID: 27058035)
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):14048-53. (PMID: 26504237)
J Virol. 2005 Mar;79(6):3873-7. (PMID: 15731283)
Blood. 2011 Aug 18;118(7):1806-17. (PMID: 21772053)
PLoS Biol. 2017 Dec 18;15(12):e2004086. (PMID: 29253856)
J Virol. 2010 Jan;84(1):585-98. (PMID: 19846511)
Cell Rep. 2014 Nov 20;9(4):1265-72. (PMID: 25457611)
Cell. 2015 Feb 12;160(4):631-643. (PMID: 25679759)
Nucleic Acids Res. 2019 Sep 5;47(15):8061-8083. (PMID: 31276592)
J Mol Biol. 2013 Dec 13;425(24):4857-71. (PMID: 24013068)
J Virol. 2017 Apr 13;91(9):. (PMID: 28202764)
J Virol. 2019 Aug 28;93(18):. (PMID: 31118263)
Med Microbiol Immunol. 2019 Aug;208(3-4):263-269. (PMID: 31004198)
J Gen Virol. 1997 Nov;78 ( Pt 11):2859-70. (PMID: 9367373)
PLoS Pathog. 2011 Dec;7(12):e1002444. (PMID: 22241980)
Am J Dis Child. 1979 May;133(5):482-5. (PMID: 219685)
J Virol. 2007 Mar;81(5):2391-400. (PMID: 17182693)
HIV Clin Trials. 2011 Mar-Apr;12(2):118-20. (PMID: 21498155)
Nat Rev Immunol. 2014 Jan;14(1):36-49. (PMID: 24362405)
PLoS One. 2014 Mar 26;9(3):e92704. (PMID: 24671169)
Antiviral Res. 2015 Nov;123:50-61. (PMID: 26343012)
Elife. 2016 Feb 16;5:e12735. (PMID: 26878752)
Elife. 2019 Jul 09;8:. (PMID: 31284899)
Rev Med Virol. 2019 Mar;29(2):e2028. (PMID: 30609250)
PLoS Pathog. 2018 Jul 17;14(7):e1007166. (PMID: 30016363)
EMBO J. 2012 Nov 5;31(21):4236-46. (PMID: 23023399)
BMC Genomics. 2013 Sep 10;14:610. (PMID: 24020411)
J Virol. 1994 May;68(5):2889-97. (PMID: 8151759)
BMC Biol. 2017 Nov 8;15(1):105. (PMID: 29117863)
Cell Host Microbe. 2017 Nov 8;22(5):627-638.e7. (PMID: 29107643)
PLoS Pathog. 2013;9(7):e1003494. (PMID: 23853601)
Cell Rep. 2020 Jan 7;30(1):46-52.e4. (PMID: 31914396)
Grant Information:
MR/N001796/1 United Kingdom MRC_ Medical Research Council; WT103767MA United Kingdom WT_ Wellcome Trust; MR/T029188/1 United Kingdom MRC_ Medical Research Council; MC_UU_12014/10 United Kingdom MRC_ Medical Research Council; MR/P022642/1 United Kingdom MRC_ Medical Research Council; BBS/E/D/20002172 United Kingdom BB_ Biotechnology and Biological Sciences Research Council; MR/K024752/1 United Kingdom MRC_ Medical Research Council
Substance Nomenclature:
0 (IE1 protein, cytomegalovirus)
0 (Immediate-Early Proteins)
0 (RNA-Binding Proteins)
0 (Repressor Proteins)
0 (Transcription Factors)
0 (Tripartite Motif Proteins)
0 (YLPM1 protein, human)
EC 2.3.2.27 (TRIM25 protein, human)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
Entry Date(s):
Date Created: 20200904 Date Completed: 20201013 Latest Revision: 20220324
Update Code:
20240104
PubMed Central ID:
PMC7498042
DOI:
10.1371/journal.ppat.1008844
PMID:
32886716
Czasopismo naukowe
The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies