Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments.

Tytuł:
Repair bond strength of dental computer-aided design/computer-aided manufactured ceramics after different surface treatments.
Autorzy:
Al-Turki L; Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Merdad Y; Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Abuhaimed TA; Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Sabbahi D; Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Almarshadi M; Yanbu General Hospital, Yanbu, Saudi Arabia.
Aldabbagh R; Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Źródło:
Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.] [J Esthet Restor Dent] 2020 Oct; Vol. 32 (7), pp. 726-733. Date of Electronic Publication: 2020 Sep 04.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: London : Wiley-Blackwell
Original Publication: Hamilton, Ontario : BC Decker, c2001-
MeSH Terms:
Dental Bonding*
Ceramics ; Computer-Aided Design ; Dental Porcelain ; Dental Stress Analysis ; Materials Testing ; Resin Cements ; Surface Properties ; Zirconium
References:
Rodrigues SB, Franken P, Celeste RK, Leitune VCB, Collares FM. CAD/CAM or conventional ceramic materials restorations longevity: a systematic review and meta-analysis. J Prosthodont Res. 2019;63:389-395.
Sampaio F, Ozcan M, Gimenez TC, et al. Effects of manufacturing methods on the survival rate of ceramic and indirect composite restorations: a systematic review and meta-analysis. J Esthet Restor Dent. 2019;31:561-571.
Vigolo P, Mutinelli S. Evaluation of zirconium-oxide-based ceramic single-unit posterior fixed dental prostheses (FDPs) generated with two CAD/CAM systems compared to porcelain-fused-to-metal single-unit posterior FDPs: a 5-year clinical prospective study. J Prosthodont. 2012;21:265-269.
Akin A, Toksavul S, Toman M. Clinical marginal and internal adaptation of maxillary anterior single all-ceramic crowns and 2-year randomized controlled clinical trial. J Prosthodont. 2015;24:345-350.
Guess PC, Selz CF, Steinhart YN, Stampf S, Strub JR. Prospective clinical split-mouth study of pressed and CAD/CAM all-ceramic partial-coverage restorations: 7-year results. Int J Prosthodont. 2013;26:21-25.
Carrabba M, Vichi A, Louca C, Ferrari M. Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics. J Adv Prosthodont. 2017;9:257-264.
Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater. 2014;30:564-569.
Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28:227-235.
Zahnfabrik Vita. Product information http://vikadent.lt/download/vita/VITA_1780E_ENAMIC_PS_EN_V02.pdf. Accessed 17 June 2020.
Ramos Nde C, Campos TM, Paz IS, Machado JP, et al. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32:870-878.
Vita Suprinity technical and scientific documentation retrieved from http://panadent.co.uk/wp-content/up-loads/2014/10/vita-duprinity-technical-and-scientific-document.dpf.
El Ghoul W, Ozcan M, Silwadi M, Salameh Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J Esthet Restor Dent. 2019;31:378-387.
Hampe R, Theelke B, Lumkemann N, Stawarczyk B. Impact of artificial aging by thermocycling on edge chipping resistance and Martens hardness of different dental CAD-CAM restorative materials. J Prosthet Dent. 2020.
Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent. 2003;89:268-274.
Kern M, Thompson VP. Bonding to glass infiltrated alumina ceramic: adhesive methods and their durability. J Prosthet Dent. 1995;73:240-249.
Özcan M, Pfeiffer P, Nergiz I. A brief history and current status of metal-and ceramic surface-conditioning concepts for resin bonding in dentistry. Quintessence Int. 1998;29:713-724.
Özcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater. 2003;19:725-731.
Hallmann L, Ulmer P, Wille S, et al. Effect of surface treatments on the properties and morphological change of dental zirconia. J Prosthet Dent. 2016;115:341-349.
Zhang Y, Lawn BR, Malament KA, Van Thompson P, Rekow ED. Damage accumulation and fatigue life of particle-abraded ceramics. Int J Prosthodont. 2006;19:442-448.
Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999;15:426-433.
Ustun O, Buyukhatipoglu IK, Secilmis A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont. 2018;27:748-754.
Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin Oral Investig. 2018;22:1973-1983.
Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont. 2010;23:493-502.
Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent. 2007;98:389-404.
Elderton RJ. Clinical studies concerning re-restoration of teeth. Adv Dent Res. 1990;4:4-9.
Loomans B, Ozcan M. Intraoral repair of direct and indirect restorations: procedures and guidelines. Oper Dent. 2016;41:S68-S78.
Celik EU, Ergucu Z, Turkun LS, Ercan UK. Tensile bond strength of an aged resin composite repaired with different protocols. J Adhes Dent. 2011;13:359-366.
Tezvergil A, Lassila LVJ, Vallittu PK. Composite-composite repair bond strength: effect of different adhesion primers. J Dent. 2003;31:521-525.
Nagayassu MP, Shintome LK, Uemura ES, JEJd A. Effect of surface treatment on the shear bond strength of a resin-based cement to porcelain. Braz Dent J. 2006;17:290-295.
Ramakrishnaiah R, Alkheraif A, Divakar D, Matinlinna J, Vallittu P. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci. 2016;17:822.
Ho GW, Matinlinna JP. Evaluation of the microtensile bond strength between resin composite and hydrofluoric acid etched ceramic in different storage media. J Adhes Sci Technol. 2011;25:2671-2685.
Ho GW, Matinlinna JP. Insights on ceramics as dental materials. Part I: ceramic material types in dentistry. SILICON. 2011;3:109-115.
Ho GW, Matinlinna JP. Insights on ceramics as dental materials. Part II: chemical surface treatments. SILICON. 2011;3:117-123.
Akyil MS, Yilmaz A, Karaalioglu OF, Duymus ZY. Shear bond strength of repair composite resin to an acid-etched and a laser-irradiated feldspathic ceramic surface. Photomed Laser Surg. 2010;28:539-545.
Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain. J Dent. 1998;26:53-58.
Kupiec KA, Wuertz KM, Barkmeier WW, Wilwerding TM. Evaluation of porcelain surface treatments and agents for composite-to-porcelain repair. J Prosthet Dent. 1996;76:119-124.
Kussano CM, Bonfante G, Batista JG, Pinto JHN. Evaluation of shear bond strength of composite to porcelain according to surface treatment. Braz Dent J. 2003;14:132-135.
W-s O, Shen C. Effect of surface topography on the bond strength of a composite to three different types of ceramic. J Prosthet Dent. 2003;90:241-246.
Queiroz JR, Souza RO, Nogueira Junior L Jr, Ozcan M, Bottino MA. Influence of acid-etching and ceramic primers on the repair of a glass ceramic. Gen Dent. 2012;60:e79-e85.
Sattabanasuk V, Charnchairerk P, Punsukumtana L, Burrow MF. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties. J Investig Clin Dent. 2016;8:e12220.
Campos F, Almeida CS, Rippe MP, de Melo RM, Valandro LF, Bottino MA. Resin bonding to a hybrid ceramic: effects of surface treatments and aging. Oper Dent. 2016;41:171-178.
Comba L, P B, E L, J D, Houšová D. The effect of surface treatment and adhesive system on the durability of composite repairs. Dentistry. 2015;05:318.
Ozcan M, Allahbeickaraghi A, Dundar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Investig. 2012;16:15-23.
Litovitz TL, Klein-Schwartz W, Dyer KS, Shannon M, Lee S, Powers M. 1997 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med. 1998;16:443-497.
Bertolini JC. Hydrofluoric acid: a review of toxicity. J Emerg Med. 1992;10:163-168.
Garbelotto LGD, Fukushima KA, Ozcan M, Cesar PF, Volpato CAM. Chipping of veneering ceramic on a lithium disilicate anterior single crown: description of repair method and a fractographic failure analysis. J Esthet Restor Dent. 2019;31:299-303.
Ozcan M, Volpato CA. Surface conditioning protocol for the adhesion of resin-based materials to glassy matrix ceramics: how to condition and why? J Adhes Dent. 2015;17:292-293.
Kern M, Thompson VP. Sandblasting and silica-coating of dental alloys: volume loss, morphology and changes in the surface composition. Dent Mater. 1993;9:155-161.
Lung CY, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28:467-477.
Underhill P, Duquesnay D. Corrosion resistance imparted to aluminum by silane coupling agents. Silanes and Other Coupling Agents. Vol 2; 2000:149.
Fischer T. Tribochemistry. Annu Rev Mater Res. 1988;18:303-323.
Gbureck U, Masten A, Probst J, Thull R. Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers. Mater Sci Eng C. 2003;23:461-465.
Hisamatsu N, Atsuta M, Matsumura H. Effect of silane primers and unfilled resin bonding agents on repair bond strength of a prosthodontic microfilled composite. J Oral Rehabil. 2002;29:644-648.
Lima AF, Leite TV, Palialol AM, et al. Effect of surface conditioning methods, adhesive systems and resin composite on repair strength of dimethacrylate and silorane resin composites. J Adhes Sci Technol. 2016;30:2736-2744.
Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63:1248-1254.
Swift EJ Jr, Cloe BC, Boyer DB. Effect of a silane coupling agent on composite repair strengths. Am J Dent. 1994;7:200-202.
Tinastepe N, Turkes E, Kazazoglu E. Comparative approach to analyse the effects of different surface treatments on CAD/CAM resin nanoceramics-resin composite repair bond strength. Biotechnol Biotech Equip. 2017;32:142-149.
Özcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J. 2008;27:99-104.
Grant Information:
King AbdulAziz University
Contributed Indexing:
Keywords: CAD/CAM ceramics; airborne particle abrasion; hydrofluoric acid; microtensile bond strength; repair; tribochemical silicoating
Substance Nomenclature:
0 (Resin Cements)
12001-21-7 (Dental Porcelain)
C6V6S92N3C (Zirconium)
Entry Date(s):
Date Created: 20200904 Date Completed: 20201016 Latest Revision: 20201016
Update Code:
20240104
DOI:
10.1111/jerd.12635
PMID:
32886852
Czasopismo naukowe
Objective: To evaluate the microtensile bond strength of four dental computer-aided design/computer-aided manufactured (CAD/CAM) ceramics after application of four different surface treatments.
Materials and Methods: Four dental CAD/CAM ceramics were tested: feldspathic ceramic (VITABLOCKS-Mark II), polymer-infiltrated ceramic network (VITA ENAMIC), zirconia-reinforced lithium silicate (VITA SUPRINITY), and yttria-stabilized zirconia (VITA YZ T). Four surface treatments were applied: no treatment, 5% hydrofluoric acid-etching, airborne particle abrasion, and tribochemical silica coating. The ceramic blocks were repaired with nanohybrid composite (Tetric N-Collection). Sixteen test groups of 12 specimens were prepared. After thermocycling, microtensile bond testing was performed. The microtensile strengths values were statistically analyzed using two-way analysis of variance and Tukey's post-hoc test.
Results: Repaired feldspathic and resin polymer-infiltrated ceramic network ceramics demonstrated superior microtensile bond strengths compared to zirconia-reinforced lithium silicate and yttria-stabilized zirconia. Etched feldspathic and polymer-infiltrated ceramic network ceramics had higher bond strength than the untreated groups. Surface treatments did not affect the bond strength of zirconia-reinforced lithium silicate and yttria-stabilized zirconia with the exception of etching, which reduced the bond strength of yttria-stabilized zirconia.
Conclusion: Feldspathic ceramic and polymer-infiltrated ceramic network were repaired with dental composite after surface etching with hydrofluoric acid. Repair of zirconia-reinforced lithium silicate and yttria-stabilized zirconia did not demonstrate promising results.
Clinical Significance: Repair of feldspathic ceramic and polymer-infiltrated ceramic network restorations may be a cost-effective means to promote the longevity of dental restorations. However, zirconia and zirconia-reinforced lithium disilicate restorations do not offer such an option.
(© 2020 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies