Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Segmented flow generator for serial crystallography at the European X-ray free electron laser.

Tytuł:
Segmented flow generator for serial crystallography at the European X-ray free electron laser.
Autorzy:
Echelmeier A; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Cruz Villarreal J; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Messerschmidt M; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Kim D; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Coe JD; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Thifault D; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Botha S; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Egatz-Gomez A; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Gandhi S; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Brehm G; Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
Conrad CE; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Hansen DT; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Madsen C; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Bajt S; Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.; Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
Meza-Aguilar JD; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Oberthür D; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Wiedorn MO; Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Fleckenstein H; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Mendez D; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Knoška J; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.; Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
Martin-Garcia JM; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Hu H; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Lisova S; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Allahgholi A; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Gevorkov Y; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.; Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstraße 20, 21079, Hamburg, Germany.
Ayyer K; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Aplin S; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Ginn HM; Division of Structural Biology, University of Oxford, Oxford, OX1 2JD, United Kingdom.; Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, United Kingdom.
Graafsma H; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Morgan AJ; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Greiffenberg D; Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
Klujev A; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Laurus T; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Poehlsen J; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Trunk U; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Mezza D; Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
Schmidt B; Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
Kuhn M; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Fromme R; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Sztuk-Dambietz J; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Raab N; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Hauf S; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Silenzi A; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Michelat T; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Xu C; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Danilevski C; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Parenti A; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Mekinda L; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Weinhausen B; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Mills G; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Vagovic P; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Kim Y; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Kirkwood H; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Bean R; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Bielecki J; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Stern S; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Giewekemeyer K; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Round AR; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.; School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5AZ, United Kingdom.
Schulz J; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Dörner K; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
Grant TD; Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 955 Main St, Buffalo, NY, 14203, USA.
Mariani V; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Barty A; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
Mancuso AP; European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
Weierstall U; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Spence JCH; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Chapman HN; Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.; Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
Zatsepin N; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.; ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
Fromme P; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.
Kirian RA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA.; Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
Ros A; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA. .; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287-7401, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Sep 09; Vol. 11 (1), pp. 4511. Date of Electronic Publication: 2020 Sep 09.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Electrons*
Lab-On-A-Chip Devices*
Lasers*
Crystallography/*instrumentation
Aldehyde-Lyases/ultrastructure ; Escherichia coli Proteins/ultrastructure ; Hydrodynamics
References:
Bowman, S. E., Bridwell-Rabb, J. & Drennan, C. L. Metalloprotein crystallography: more than a structure. Acc. Chem. Res. 49, 695–702 (2016). (PMID: 26975689483894710.1021/acs.accounts.5b00538)
Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). (PMID: 21293373342959810.1038/nature09750)
Andersson, R. et al. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Sci. Rep. 7, 4518 (2017). (PMID: 28674417549581010.1038/s41598-017-04817-z)
Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016). (PMID: 27151871529107910.1126/science.aad5081)
Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018). (PMID: 2925651110.1038/nchem.2853)
Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015). (PMID: 2635933610.1126/science.aac5492)
Suga, M. et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543, 131–135 (2017). (PMID: 2821907910.1038/nature21400)
Wickstrand, C. et al. Bacteriorhodopsin: structural insights revealed using X-ray lasers and synchrotron radiation. Annu. Rev. Biochem. 88, 59–83 (2019). (PMID: 3083079910.1146/annurev-biochem-013118-111327)
Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177–3177 (2019). (PMID: 31320619663934210.1038/s41467-019-10758-0)
Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018). (PMID: 30405241648524210.1038/s41586-018-0681-2)
Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, eaat0094 (2018). (PMID: 2990388310.1126/science.aat0094)
Nango, E. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354, 1552–1557 (2016). (PMID: 2800806410.1126/science.aah3497)
Johansson, L. C., Stauch, B., Ishchenko, A. & Cherezov, V. A bright future for serial femtosecond crystallography with XFELs. Trends Biochem. Sci. 42, 749–762 (2017). (PMID: 28733116560068310.1016/j.tibs.2017.06.007)
Martin-Garcia, J. M., Conrad, C. E., Coe, J., Roy-Chowdhury, S. & Fromme, P. Serial femtosecond crystallography: a revolution in structural biology. Arch. Biochem. Biophys. 602, 32–47 (2016). (PMID: 27143509490953910.1016/j.abb.2016.03.036)
Wiedorn, M. O. et al. Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ 5, 574–584 (2018). (PMID: 30224961612665310.1107/S2052252518008369)
Wiedorn, M. O. et al. Megahertz serial crystallography. Nat. Commun. 9, 4025 (2018). (PMID: 30279492616854210.1038/s41467-018-06156-7)
Weierstall, U., Spence, J. C. & Doak, R. B. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012). (PMID: 2246296110.1063/1.3693040)
Oberthuer, D. et al. Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci. Rep. 7, 44628 (2017). (PMID: 28300169535365210.1038/srep44628)
Grunbein, M. L. et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 9, 3487 (2018). (PMID: 30154468611330910.1038/s41467-018-05953-4)
Knoška, J. et al. Ultracompact 3D microfluidics for time-resolved structural biology. Nat. Commun. 11, 657 (2020). (PMID: 32005876699454510.1038/s41467-020-14434-6)
Conrad, C. E. et al. A novel inert crystal delivery medium for serial femtosecond crystallography. IUCrJ 2, 421–430 (2015). (PMID: 26177184449131410.1107/S2052252515009811)
Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014). (PMID: 2452548010.1038/ncomms4309)
Echelmeier, A., Sonker, M. & Ros, A. Microfluidic sample delivery for serial crystallography using XFELs. Anal. Bioanal. Chem. 25, 6535–6547 (2019). (PMID: 10.1007/s00216-019-01977-x)
Hunter, M. S. et al. Fixed-target protein serial microcrystallography with an x-ray free electron laser. Sci. Rep. 4, 6026–6026 (2014). (PMID: 25113598412942310.1038/srep06026)
Roedig, P. et al. A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering. Sci. Rep. 5, https://doi.org/10.1038/srep10451 (2015).
Sherrell, D. A. et al. A modular and compact portable mini‐endstation for high‐precision, high‐speed fixed target serial crystallography at FEL and synchrotron sources. J. Synchrotron Radiat. 22, 1372–1378 (2015). (PMID: 26524301462986510.1107/S1600577515016938)
Roedig, P. et al. Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering. J. Appl. Crystallogr. 49, 968–975 (2016). (PMID: 27275143488698610.1107/S1600576716006348)
Oghbaey, S. et al. Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. Acta Crystallogr. Sect. D. 72, 944–955 (2016). (PMID: 10.1107/S2059798316010834)
Owen, R. L. et al. Low‐dose fixed‐target serial synchrotron crystallography. Acta Crystallogr. Sect. D. 73, 373–378 (2017). (PMID: 10.1107/S2059798317002996)
Sierra, R. G. et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr. Sect. D. 68, 1584–1587 (2012). (PMID: 10.1107/S0907444912038152)
Sierra, R. G. et al. Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II. Nat. Methods 13, 59–62 (2016). (PMID: 2661901310.1038/nmeth.3667)
Cheng, R. K. Y. Towards an optimal sample delivery method for serial crystallography at XFEL. Crystals 10, 215 (2020). (PMID: 10.3390/cryst10030215)
Srajer, V. & Schmidt, M. Watching proteins function with time-resolved X-ray crystallography. J. Phys. D. Appl Phys. 50, 373001 (2017). (PMID: 29353938577143210.1088/1361-6463/aa7d32)
Roessler, C. G. et al. Acoustic injectors for drop-on-demand serial femtosecond crystallography. Structure 24, 631–640 (2016). (PMID: 26996959492000110.1016/j.str.2016.02.007)
Fuller, F. D. et al. Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat. Methods 14, 443–449 (2017). (PMID: 28250468537623010.1038/nmeth.4195)
Young, D. I. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016). (PMID: 27871088520117610.1038/nature20161)
Mehrabi, P. et al. Liquid application method for time-resolved analyses by serial synchrotron crystallography. Nat. Methods 16, 979–982 (2019). (PMID: 3152783810.1038/s41592-019-0553-1)
Mafune, F. et al. Microcrystal delivery by pulsed liquid droplet for serial femtosecond crystallography. Acta Crystallogr. D. 72, 520–523 (2016). (PMID: 10.1107/S2059798316001480)
Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010). (PMID: 10.1038/nphoton.2010.176)
Tono, K. et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys. 15, https://doi.org/10.1088/1367-2630/15/8/083035 (2013).
Park, J., Kim, S., Nam, K. H., Kim, B. & Ko, I. S. Current status of the CXI beamline at the PAL-XFEL. J. Korean Phys. Soc. 69, 1089–1093 (2016). (PMID: 10.3938/jkps.69.1089)
Milne, C. J. et al. SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017). (PMID: 10.3390/app7070720)
Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130337 (2014). (PMID: 24914163405287210.1098/rstb.2013.0337)
Echelmeier, A. et al. 3D printed droplet generation devices for serial femtosecond crystallography enabled by surface coating. J. Appl. Crystallogr 52, 997–1008 (2019). (PMID: 31636518678207510.1107/S1600576719010343)
Schulz, J. et al. A versatile liquid-jet setup for the European XFEL. J. Synchrotron Radiat. 26, 339–345 (2019). (PMID: 30855241641218110.1107/S1600577519000894)
Allahgholi, A. et al. The adaptive gain integrating pixel detector at the European XFEL. J. Synchrotron Radiat. 26, 74–82 (2019). (PMID: 30655470633789210.1107/S1600577518016077)
Yefanov, O. et al. Evaluation of serial crystallographic structure determination within megahertz pulse trains. Struct. Dyn. 6, 064702 (2019). (PMID: 31832488689271010.1063/1.5124387)
Zhang, S. H., Guivier-Curien, C., Veesler, S. & Candoni, N. Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics. Chem. Eng. Sci. 138, 128–139 (2015). (PMID: 10.1016/j.ces.2015.07.046)
Xu, J. H., Li, S. W., Tan, J. & Luo, G. S. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluid. 5, 711–717 (2008). (PMID: 10.1007/s10404-008-0306-4)
Christopher, G. F., Noharuddin, N. N., Taylor, J. A. & Anna, S. L. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78, 036317 (2008). (PMID: 1885115310.1103/PhysRevE.78.036317)
Gupta, A. & Kumar, R. Flow regime transition at high capillary numbers in a microfluidic T-junction: viscosity contrast and geometry effect. Phys. Fluids 22, 122001 (2010). (PMID: 10.1063/1.3523483)
Wehking, J. D., Gabany, M., Chew, L. & Kumar, R. Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluid. Nanofluid. 16, 441–453 (2014). (PMID: 10.1007/s10404-013-1239-0)
Gañán-Calvo, A. M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285–288 (1998). (PMID: 10.1103/PhysRevLett.80.285)
Jonsson, H. O., Caleman, C., Andreasson, J. & Timneanu, N. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission. IUCrJ 4, 778–784 (2017). (PMID: 29123680566886310.1107/S2052252517014154)
White, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45, 335–341 (2012). (PMID: 10.1107/S0021889812002312)
Vainer, R., Belakhov, V., Rabkin, E., Baasov, T. & Adir, N. Crystal structures of Escherichia coli KDO8P synthase complexes reveal the source of catalytic irreversibility. J. Mol. Biol. 351, 641–652 (2005). (PMID: 1602366810.1016/j.jmb.2005.06.021)
Radaev, S., Dastidar, P., Patel, M., Woodard, R. W. & Gatti, D. L. Structure and mechanism of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. J. Biol. Chem. 275, 9476–9484 (2000). (PMID: 1073409510.1074/jbc.275.13.9476)
Coe, J. Life in motion: visualizing biomacromolecules by time-resolved serial femtosecond crystallography. In: Center for Applied Structural Discovery. The Biodesign Institute (Arizona State University, 2018).
Lomb, L. et al. An anti-settling sample delivery instrument for serial femtosecond crystallography. J. Appl. Crystallogr. 45, 674–678 (2012). (PMID: 10.1107/S0021889812024557)
Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013). (PMID: 24357322390210810.1126/science.1244142)
Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 17, 73–78 (2020). (PMID: 3174081610.1038/s41592-019-0628-z)
Kim, D. et al. Electric triggering for enhanced control of droplet generation. Anal. Chem. 91, 9792–9799 (2019). (PMID: 3126062110.1021/acs.analchem.9b014497904246)
Ishigami, I. et al. Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 116, 3572 (2019). (PMID: 3080874910.1073/pnas.18145261166397517)
Conrad, C. E. Overcoming Barriers in Structural Biology Through Method Development of Serial Crystallography. (Arizona State University, 2016).
Kupitz, C. et al. Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130316 (2014). (PMID: 24914149405285810.1098/rstb.2013.0316)
Gisriel, C. et al. Membrane protein megahertz crystallography at the European XFEL. Nat. Commun. 10, 5021 (2019). (PMID: 31685819682868310.1038/s41467-019-12955-3)
Mancuso, A. P. et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: initial installation. J. Synchrotron Radiat. 26, 660–676 (2019). (PMID: 31074429651019510.1107/S1600577519003308)
Geloni, G. et al. Coherence properties of the European XFEL. N. J. Phys. 12, 035021 (2010). (PMID: 10.1088/1367-2630/12/3/035021)
Boukhelef, D., Szuba, J., Wrona, K. & Youngman, C. Software development for high speed data recording and processing. CALEPCS2013 (2013).
Fangohr, H. et al. Data Analysis support in Karabo at European XFEL. In: 16th International Conference on Accelerator and Large Experimental Control Systems) (JACoW Publishing, 2017).
Barty, A. et al. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl .Crystallogr. 47, 1118–1131 (2014). (PMID: 24904246403880010.1107/S1600576714007626)
Gevorkov, Y. et al. XGANDALF–extended gradient descent algorithm for lattice finding. Acta Crystallogr. Sect. A 74, 694–704 (2019).
Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992). (PMID: 10.1107/S0021889891010634)
Powell, H. R., Johnson, O. & Leslie, A. G. Autoindexing diffraction images with iMosflm. Acta Crystallogr. D. Biol. Crystallogr. 69, 1195–1203 (2013). (PMID: 23793145368952210.1107/S0907444912048524)
Kabsch, W. Xds. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010). (PMID: 20124692281566510.1107/S0907444909047337)
White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016). (PMID: 27047311481587910.1107/S1600576716004751)
White, T. A. Processing serial crystallography data with CrystFEL: a step-by-step guide. Acta Crystallogr. D. Struct. Biol. 75, 219–233 (2019). (PMID: 30821710640025710.1107/S205979831801238X)
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr. 67, 235–242 (2011). (PMID: 21460441306973810.1107/S0907444910045749)
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). (PMID: 19461840248347210.1107/S0021889807021206)
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355–367 (2011). (PMID: 21460454306975110.1107/S0907444911001314)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213–220 (2014). (PMID: 25075342410792110.1107/S2052252514009324)
Joosten, R. P., Joosten, K., Murshudov, G. N. & Perrakis, A. PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr. D. Biol. Crystallogr. 68, 484–496 (2012). (PMID: 22505269332260810.1107/S0907444911054515)
Schrödinger, L. L. C. The PyMOL Molecular Graphics System, Version~1.8. (2015).
Grant Information:
R01 GM095583 United States GM NIGMS NIH HHS; S10 OD021816 United States OD NIH HHS
Substance Nomenclature:
0 (Escherichia coli Proteins)
EC 2.5.1.55 (2-dehydro-3-deoxyphosphooctonate aldolase)
EC 4.1.2.- (Aldehyde-Lyases)
Entry Date(s):
Date Created: 20200910 Date Completed: 20200930 Latest Revision: 20220418
Update Code:
20240105
PubMed Central ID:
PMC7481229
DOI:
10.1038/s41467-020-18156-7
PMID:
32908128
Czasopismo naukowe
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies