Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Molecular basis of the silkworm mutant re l causing red egg color and embryonic death.

Tytuł:
Molecular basis of the silkworm mutant re causing red egg color and embryonic death.
Autorzy:
Luo JW; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
An EX; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Lu YR; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Yang L; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Gai TT; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
He SZ; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Wu SY; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Hu H; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Li CL; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Lu C; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Tong XL; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Dai FY; State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, College of Biotechnology, Southwest University, Chongqing, 400715, China.
Źródło:
Insect science [Insect Sci] 2021 Oct; Vol. 28 (5), pp. 1290-1299. Date of Electronic Publication: 2020 Oct 13.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Victoria, Australia : Blackwell Pub., c2005-
MeSH Terms:
Bombyx*/embryology
Bombyx*/genetics
Insect Proteins*/genetics
Ovum/*pathology
Semaphorins/*genetics
Animals ; Embryo, Nonmammalian ; Embryonic Development/genetics ; Phenotype ; Pigmentation
References:
Abram, P.K., Guerra-Grenier, E., Despres-Einspenner, M.L., Ito, S., Wakamatsu, K., Boivin, G. et al. (2015) An insect with selective control of egg coloration. Current Biology, 25, 2007-2011.
Battistini, C. and Tamagnone, L. (2016) Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cellular and Molecular Life Sciences, 73, 1609-1622.
Chen, A., Gao, P., Zhao, Q., Tang, S., Shen, X., Zhang, G. et al. (2013) Mutation of a vitelline membrane protein, BmEP80, is responsible for the silkworm “Ming” lethal egg mutant. Gene, 515, 313-319.
Chen, A., Liao, P., Li, Q., Zhao, Q., Yang, W., Zhu, S. et al. (2015) The structural variation is associated with the embryonic lethality of a novel red egg mutant fuyin-lre of silkworm, Bombyx mori. PLoS ONE, 10, e0128211.
Cho, J.Y., Chak, K., Andreone, B.J., Wooley, J.R. and Kolodkin, A.L. (2012) The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes & Development, 26, 2222-2235.
Fujii, T., Nakao, F., Shibata, Y., Shioi, G., Kodama, E., Fujisawa, H. et al. (2002) Caenorhabditis elegans PlexinA, PLX-1, interacts with transmembrane semaphorins and regulates epidermal morphogenesis. Development, 129, 2053-2063.
Futahashi, R. and Fujiwara, H. (2005) Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Development Genes and Evolution, 215, 519-529.
Ginzburg, V.E., Roy, P.J. and Culotti, J.G. (2002) Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in C. elegans. Development, 129, 2065-2078.
Hsieh, H.H., Chang, W.T., Yu, L. and Rao, Y. (2014) Control of axon-axon attraction by Semaphorin reverse signaling. Proceedings of the National Academy of Sciences USA, 111, 11383-11388.
Komoto, N., Quan, G.X., Sezutsu, H. and Tamura, T. (2009) A single-base deletion in an ABC transporter gene causes white eyes, white eggs, and translucent larval skin in the silkworm w-3 (oe) mutant. Insect Biochemistry and Molecular Biology, 39, 152-156.
Kruger, R.P., Aurandt, J. and Guan, K.L. (2005) Semaphorins command cells to move. Nature Reviews: Molecular Cell Biology, 6, 789-800.
Linzen, B. (1974) The Tryptophan→Ommochrome pathway in insects. Advance in Insect Physiology, 10, 117-246.
Liu, C., Yamamoto, K., Cheng, T.C., Kadono-Okuda, K., Narukawa, J., Liu, S.P. et al. (2010) Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences USA, 107, 12980-12985.
Liu, X., Tu, X., He, H., Chen, C. and Xue, F. (2014) Evidence for inbreeding depression and pre-copulatory, but not post copulatory inbreeding avoidance in the cabbage beetle Colaphellus bowringi. PLoS ONE, 9, e94389.
Mackenzie, S.M., Brooker, M.R., Gill, T.R., Cox, G.B., Howells, A.J. and Ewart, G.D. (1999) Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochimica et Biophysica Acta - Biomembranes, 1419, 173-185.
Meng, Y., Katsuma, S., Daimon, T., Banno, Y., Uchino, K., Sezutsu, H. et al. (2009) The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. Journal of Biological Chemistry, 284, 11698-11705.
Movassagh, H., Khadem, F. and Gounni, A.S. (2018) Semaphorins and their roles in airway biology: potential as therapeutic targets. American Journal of Respiratory Cell and Molecular Biology, 58, 21-27.
Naito, Y., Hino, K., Bono, H. and Ui-Tei, K. (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31, 1120-3.
Osanai-Futahashi, M., Tatematsu, K., Yamamoto, K., Narukawa, J., Uchino, K., Kayukawa, T. et al. (2012) Identification of the Bombyx red egg gene reveals involvement of a novel transporter family gene in late steps of the insect ommochrome biosynthesis pathway. Journal of Biological Chemistry, 287, 17706-17714.
Osanai-Futahashi, M., Tatematsu, K.I., Futahashi, R., Narukawa, J., Takasu, Y., Kayukawa, T. et al. (2016) Positional cloning of a Bombyx pink-eyed white egg locus reveals the major role of cardinal in ommochrome synthesis. Heredity (Edinb), 116, 135-145.
Quan, G.X., Kim, I., Komoto, N., Sezutsu, H., Ote, M., Shimada, T. et al. (2002) Characterization of the kynurenine 3-monooxygenase gene corresponding to the white egg 1 mutant in the silkworm Bombyx mori. Molecular Genetics and Genomics, 267, 1-9.
Sawada, H., Nakagoshi, M., Mase, K. and Yamamoto, T. (2000) Occurrence of ommochrome-containing pigment granules in the central nervous system of the silkworm, Bombyx mori. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, 125, 421-428.
Tatematsu, K., Yamamoto, K., Uchino, K., Narukawa, J., Iizuka, T., Banno, Y. et al. (2011) Positional cloning of silkworm white egg 2 (w-2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects. Genes Cells, 16, 331-342.
Tautz, D. and Pfeifle, C. (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma, 98, 81-85.
Tran, T.S., Kolodkin, A.L. and Bharadwaj, R. (2007) Semaphorin regulation of cellular morphology. Annual Review of Cell and Developmental Biology, 23, 263-292.
Worzfeld, T. and Offermanns, S. (2014) Semaphorins and plexins as therapeutic targets. Nature Reviews Drug Discovery, 13, 603-621.
Xia, Q., Cheng, D., Duan, J., Wang, G., Cheng, T., Zha, X. et al. (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biology, 8, R162.
Xiong, G., Tong, X.L., Gai, T.T., Li, C.L., Qiao, L., Monteiro, A. et al. (2017) Body shape and coloration of silkworm larvae are influenced by a novel cuticular protein. Genetics, 207, 1053-1066.
Zhang, H., Lin, Y., Shen, G., Tan, X., Lei, C., Long, W. et al. (2017) Pigmentary analysis of eggs of the silkworm Bombyx mori. Journal of Insect Physiology, 101, 142-150.
Zhang, K., Xu, M., Su, J., Yu, S., Sun, Z., Li, Y. et al. (2014) Characterization and identification of the integrin family in silkworm, Bombyx mori. Gene, 549, 149-155.
Grant Information:
CARS-18-ZJ0102 Earmarked Fund for China Agriculture Research System; 31830094 National Natural Science Foundation of China; 2013AA102507 Hi-Tech Research and Development 863 Program of China Grant
Contributed Indexing:
Keywords: BmSema1a; CRISPR/Cas9; embryonic mortality; red egg; silkworm
Substance Nomenclature:
0 (Insect Proteins)
0 (Semaphorins)
Entry Date(s):
Date Created: 20200912 Date Completed: 20211129 Latest Revision: 20211129
Update Code:
20240105
DOI:
10.1111/1744-7917.12871
PMID:
32918398
Czasopismo naukowe
The coloration and hatchability of insect eggs can affect individual and population survival. However, few genetic loci have been documented to affect both traits, and the genes involved in regulating these two traits are unclear. The silkworm recessive mutant re l shows both red egg color and embryo mortality. We studied the molecular basis of the re l phenotype formation. Through genetic analysis, gene screening and sequencing, we found that two closely linked genes, BGIBMGA003497 (Bm-re) and BGIBMGA003697 (BmSema1a), control egg color and embryo mortality, respectively. Six base pairs of the Bm-re gene are deleted in its open reading frame, and BmSema1a is expressed at abnormally low levels in mutant re l . BmSema1a gene function verification was performed using RNA interference and clustered randomly interspersed palindromic repeats (CRISPR)/CRISPR-associate protein 9. Deficiency of the BmSema1a gene can cause the death of silkworm embryos. This study revealed the molecular basis of silkworm re l mutant formation and indicated that the Sema1a gene is essential for insect embryo development.
(© 2020 Institute of Zoology, Chinese Academy of Sciences.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies