Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Detection of gadolinium deposition in cortical bone with ultrashort echo time T 1 mapping: an ex vivo study in a rabbit model.

Tytuł:
Detection of gadolinium deposition in cortical bone with ultrashort echo time T 1 mapping: an ex vivo study in a rabbit model.
Autorzy:
Zhao K; School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Li S; Department of Medical Imaging, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510515, China.
Yi P; School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Guo Y; School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Yu Q; Department of Medical Imaging, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510515, China.
Zhu C; Department of Medical Imaging, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510515, China.
Feng Q; School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.
Du J; Department of Radiology, University of California, San Diego, CA, USA.
Zhang X; Department of Medical Imaging, Third Affiliated Hospital, Southern Medical University, Guangzhou, 510515, China. .
Feng Y; School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China. .; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China. .
Źródło:
European radiology [Eur Radiol] 2021 Mar; Vol. 31 (3), pp. 1569-1577. Date of Electronic Publication: 2020 Sep 14.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin : Springer International, c1991-
MeSH Terms:
Gadolinium*
Organometallic Compounds*
Animals ; Contrast Media ; Cortical Bone/diagnostic imaging ; Gadolinium DTPA ; Magnetic Resonance Imaging ; Male ; Rabbits
References:
Lohrke J, Frenzel T, Endrikat J et al (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33(1):1–28. (PMID: 268092514735235)
Bussi S, Coppo A, Botteron C et al (2018) Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 47(3):746–752. (PMID: 28730643)
Bussi S, Penard L, Bonafe R et al (2018) Non-clinical assessment of safety and gadolinium deposition after cumulative administration of gadobenate dimeglumine (MultiHance((R))) to neonatal and juvenile rats. Regul Toxicol Pharmacol 92:268–277. (PMID: 29278694)
Kanda T, Osawa M, Oba H et al (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275(3):803–809. (PMID: 25633504)
Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 51(7):447–453. (PMID: 26863577)
Stanescu AL, Shaw DW, Murata N et al (2020) Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation. Pediatr Radiol 50(3):388–396. (PMID: 31989188)
Burke LMB, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC (2016) Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging 34(8):1078–1080. (PMID: 27211256)
Vidaud C, Bourgeois D, Meyer D (2012) Bone as target organ for metals: the case of f-elements. Chem Res Toxicol 25(6):1161–1175. (PMID: 22458510)
Hirano S, Suzuki KT (1996) Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1):85–95. (PMID: 87221131469566)
Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE (2009) Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 1(6):479–488. (PMID: 21305156)
Lohrke J, Frisk AL, Frenzel T et al (2017) Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol 52(6):324–333. (PMID: 283236575417580)
Wedeking P, Tweedle M (1988) Comparison of the biodistribution of 153Gd-labeled Gd(DTPA)2-, Gd(DOTA)-, and Gd(acetate) n in mice. Int J Rad Appl Instrum B 15(4):395–402. (PMID: 3255735)
Lord ML, Chettle DR, Grafe JL, Noseworthy MD, McNeill FE (2018) Observed deposition of gadolinium in bone using a new noninvasive in vivo biomedical device: results of a small pilot feasibility study. Radiology 287(1):96–103. (PMID: 29237148)
Tedeschi E, Palma G, Canna A et al (2016) In vivo dentate nucleus MRI relaxometry correlates with previous administration of gadolinium-based contrast agents. Eur Radiol 26(12):4577–4584. (PMID: 26905870)
Krug R, Larson PE, Wang C et al (2011) Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study. J Magn Reson Imaging 34(3):691–695. (PMID: 217699603197976)
Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM (2010) Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reason 207(2):304–311.
Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846. (PMID: 14600447)
Ma YJ, Lu X, Carl M et al (2018) Accurate T1 mapping of short T2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method. Magn Reson Med 80(2):598–608. (PMID: 293142355912804)
Hafner S (1994) Fast imaging in liquids and solids with the Back-projection Low Angle ShoT (BLAST) technique. Magn Reson Imaging 12(7):1047–1051. (PMID: 7997092)
Madio DP, Lowe IJ (1995) Ultra-fast imaging using low flip angles and FIDs. Magn Reson Med 34(4):525–529. (PMID: 8524019)
U.S. Food and Drug Administration (Published 2005. Accessed 2018.) Guidance for Industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. https://www.fda.gov/downloads/Drugs/Guidances/UCM078932.pdf.
Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H (2016) Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents. Invest Radiol 51(2):83–89. (PMID: 266065484747981)
Robert P, Violas X, Grand S et al (2016) Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol 51(2):73–82. (PMID: 266065494747982)
Robert P, Lehericy S, Grand S et al (2015) T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 50(8):473–480. (PMID: 261076514494686)
Pietsch H, Lengsfeld P, Jost G, Frenzel T, Hütter J, Sieber MA (2009) Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents. Eur Radiol 19(6):1417–1424. (PMID: 19169690)
Chang EY, Du J, Bae WC, Statum S, Chung CB (2014) Effects of Achilles tendon immersion in saline and perfluorochemicals on T2 and T2*. J Magn Reson Imaging 40(2):496–500. (PMID: 24155129)
Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydder GM (2007) Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging 25(2):279–289. (PMID: 17260388)
Fessler JA (2007) On NUFFT-based gridding for non-Cartesian MRI. J Magn Reson 188(2):191–195. (PMID: 176891212121589)
Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57(1):192–200. (PMID: 17191242)
Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168.
Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441.
Mroue KH, Zhang R, Zhu P et al (2014) Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA. J Magn Reason 244:90–97.
Radbruch A, Weberling LD, Kieslich PJ et al (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275(3):783–791. (PMID: 25848905)
Port M, Idee JM, Medina C, Robic C, Sabatou M, Corot C (2008) Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21(4):469–490. (PMID: 18344005)
Frenzel T, Lengsfeld P, Schirmer H, Hutter J, Weinmann HJ (2008) Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 43(12):817–828. (PMID: 19002053)
Jost G, Frenzel T, Boyken J, Lohrke J, Nischwitz V, Pietsch H (2019) Long-term excretion of gadolinium-based contrast agents: linear versus macrocyclic agents in an experimental rat model. Radiology 290(2):340–348. (PMID: 30422091)
Rasschaert M, Idee JM, Robert P et al (2017) Moderate renal failure accentuates T1 signal enhancement in the deep cerebellar nuclei of gadodiamide-treated rats. Invest Radiol 52(5):255–264. (PMID: 28067754)
Makitaipale J, Sievanen H, Laitinen-Vapaavuori O (2018) Tibial bone density, cross-sectional geometry and strength in Finnish pet rabbits: a peripheral quantitative computed tomography study. Vet Rec 183(12):382. (PMID: 29960983)
White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 41(3):272–278. (PMID: 16481910)
Sedlin ED (1965) A rheologic model for cortical bone. A study of the physical properties of human femoral samples. Acta Orthop Scand Suppl. https://doi.org/10.3109/ort.1965.36.suppl-83.01.
Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J Orthop Res 1(4):405–411. (PMID: 6387075)
Akbari A, Abbasi-Rad S, Rad HS (2016) T1 correlates age: a short-TE MR relaxometry study in vivo on human cortical bone free water at 1.5T. Bone 83:17–22. (PMID: 26475122)
Peters DC, Korosec FR, Grist TM et al (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43(1):91–101. (PMID: 10642735)
Irarrazabal P, Nishimura DG (1995) Fast three dimensional magnetic resonance imaging. Magn Reson Med 33(5):656–662. (PMID: 7596269)
Dournes G, Yazbek J, Benhassen W et al (2018) 3D ultrashort echo time MRI of the lung using stack-of-spirals and spherical k-Space coverages: evaluation in healthy volunteers and parenchymal diseases. J Magn Reson Imaging 48(6):1489–1497. (PMID: 30203889)
Gurney PT, Hargreaves BA, Nishimura DG (2006) Design and analysis of a practical 3D cones trajectory. Magn Reson Med 55(3):575–582. (PMID: 16450366)
Chen J, Chang EY, Carl M et al (2017) Measurement of bound and pore water T1 relaxation times in cortical bone using three-dimensional ultrashort echo time cones sequences. Magn Reson Med 77(6):2136–2145. (PMID: 27263994)
Wan L, Zhao W, Ma Y et al (2019) Fast quantitative 3D ultrashort echo time MRI of cortical bone using extended cones sampling. Magn Reson Med 82(1):225–236. (PMID: 30821032)
Grant Information:
81871349, 61671228 National Natural Science Foundation of China; 81801653 National Natural Science Foundation of China; 2018B030333001 and 2017B090912006 Science and Technology Program of Guangdong
Contributed Indexing:
Keywords: Contrast media; Cortical bone; Gadolinium; Magnetic resonance imaging
Substance Nomenclature:
0 (Contrast Media)
0 (Organometallic Compounds)
AU0V1LM3JT (Gadolinium)
K2I13DR72L (Gadolinium DTPA)
Entry Date(s):
Date Created: 20200915 Date Completed: 20210414 Latest Revision: 20210414
Update Code:
20240104
DOI:
10.1007/s00330-020-07258-x
PMID:
32929642
Czasopismo naukowe
Objectives: To investigate the capacity of ultrashort echo time (UTE) T 1 mapping to non-invasively assess gadolinium deposition in cortical bone after gadolinium-based contrast agent (GBCA) administration.
Methods: Twenty-eight New Zealand rabbits (male, 3.0-3.5 kg) were randomly allocated into control, macrocyclic, high-dose macrocyclic, and linear GBCA groups (n = 7 for each group), and respectively given daily doses of 0.9 ml/kg bodyweight saline, 0.3 mmol/kg bodyweight gadobutrol, 0.9 mmol/kg bodyweight gadobutrol, and 0.3 mmol/kg bodyweight gadopentetate dimeglumine for five consecutive days per week over a period of 4 weeks. After a subsequent 4 weeks of recovery, the rabbits were sacrificed and their tibiae harvested. T 1 value of cortical bone was measured using a combination of UTE actual flip angle imaging and variable repetition time on a 7T animal scanner. Gadolinium concentration in cortical bone was measured using inductively coupled plasma mass spectrometry (ICP-MS). Pearson's correlation between R 1 value (R 1 = 1/T 1 ) and gadolinium concentration in cortical bone was assessed.
Results: Bone T 1 values were significantly lower in the lower-dose macrocyclic (329.2 ± 21.0 ms, p < 0.05), higher-dose macrocyclic (316.8 ± 21.7 ms, p < 0.01), and linear (296.8 ± 24.1 ms, p < 0.001) GBCA groups compared with the control group (356.3 ± 19.4 ms). Gadolinium concentrations measured by ICP-MS in the control, lower-dose macrocyclic, higher-dose macrocyclic, and linear GBCA groups were 0.04 ± 0.02 μg/g, 2.60 ± 0.48 μg/g, 4.95 ± 1.17 μg/g, and 13.62 ± 1.55 μg/g, respectively. There was a strong positive correlation between R 1 values and gadolinium concentrations in cortical bone (r = 0.73, p < 0.001).
Conclusions: These results suggest that UTE T 1 mapping has the potential to provide a non-invasive assessment of gadolinium deposition in cortical bone following GBCA administration.
Key Points: • Changes in T 1 value related to gadolinium deposition were found in bone after both linear and macrocyclic GBCA administrations. • R 1 relaxometry correlates strongly with gadolinium concentration in cortical bone. • UTE T 1 mapping provides a potential tool for non-invasively monitoring gadolinium deposition in cortical bone.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies