Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Microbial colonization on the leaf surfaces of different genotypes of Napier grass.

Tytuł:
Microbial colonization on the leaf surfaces of different genotypes of Napier grass.
Autorzy:
Tang G; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China. .
Xu L; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China.
Yin X; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China.
Hu Y; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China.
Tian J; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China.
Zhang J; South Pratacultural Center, South China Agricultural University/Guangdong Engineering Research Center of Grassland Science, Guangzhou, 510642, China.
Źródło:
Archives of microbiology [Arch Microbiol] 2021 Jan; Vol. 203 (1), pp. 335-346. Date of Electronic Publication: 2020 Sep 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag.
MeSH Terms:
Bacterial Physiological Phenomena*
Host Microbial Interactions*
Cenchrus/*genetics
Cenchrus/*microbiology
Plant Leaves/*microbiology
Yeasts/*physiology
Genotype ; Plant Leaves/chemistry ; Plant Leaves/genetics ; Sugars/analysis ; Sugars/metabolism
References:
Beattie GA (2002) Leaf surface wax and the process of leaf colonization by microorganisms. In: Lindow SE, Hecht-Poinar EI, Elliott V (eds) Phyllophere microbiology. APS Press, St. Paul, Minn, pp 3–26.
Bewick TA, Shilling DG, Querns R (1993) Evaluation of epicuticular wax removal from whole leaves with chloroform. Weed Technol 7(3):706–716. (PMID: 10.1017/S0890037X00037581)
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. (PMID: 10.1016/0003-2697(76)90527-3)
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, Berlin, pp 99–109. (PMID: 10.1007/978-1-4419-7976-6)
Chen XZ, Zhuang YF, Dong ZX, Zhang JG (2017) Factors influencing the distribution of lactic acid bacteria on Pennisetum grasses. Grassl Sci 63(3):150–158. (PMID: 10.1111/grs.12161)
Correa OS, Romero AM, Montecchia MS, Soria MA (2007) Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. J Appl Microbiol 102:781–786. (PMID: 10.1111/j.1365-2672.2006.03122.x)
De’ath G (2002) Multivariate regression trees: a technique for modeling species-environment relations. Ecology 83(4):1105–1117.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356. (PMID: 10.1021/ac60111a017)
Ehleringer JR, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200. (PMID: 10.1007/BF00344990)
Fiala V, Glad C, Martin M, Jolivet E, Derridj S (1990) Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol 115:609–615.
Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-Acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713. (PMID: 10.1007/s10886-012-0141-7)
Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-cultivars variation in bacterial population diversity and structure in the lettuce (Lactuca cultivars) phyllosphere. Appl Environ Microb 76:8117–8125. (PMID: 10.1128/AEM.01321-10)
Jacques M (1996) The effect of leaf age and position on the dynamics of microbial populations on aerial plant surfaces. In: Morris CE, Nicot PC, Nguyen CN (eds) Aerial plant surface microbiology. Plenum Press, New York, pp 233–248. (PMID: 10.1007/978-0-585-34164-4_15)
Jeffree C (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of plant cuticle. Blackwell, Oxford, pp 11–125. (PMID: 10.1002/9780470988718.ch2)
Karabourniotis G, Kyparissis A, Manetas Y (1993) Leaf hairs of Olea europaea L. protect underlying tissue against ultraviolet-B radiation damage. Environ Exp Bot 33:341–345. (PMID: 10.1016/0098-8472(93)90035-E)
Klerks MM, Franz E, van Gent-Pelzer M, Zijlstra C, van Bruggen AH (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631. (PMID: 10.1038/ismej.2007.82)
Knoll D, Schreiber L (2000) Plant-microbe interactions: wettability of ivy (Hedera helix L.) leaf surfaces in relation to colonization by epiphytic microorganisms. Microb Ecol 40:33–42. (PMID: 10.1007/s002480000012)
Knowles V, Plaxton W (2013) Quantification of total and soluble inorganic phosphate. Bioprotocol 3:e890.
Leroy C, Jauneau A, Quilichini A, Dejean A, Orivel J (2008) Comparison between the anatomical and morphological structure of leaf blades and foliar domatia in the Ant-plant Hirtella physophora (Chrysobalanaceae). Ann Bot Lond 101:501–507. (PMID: 10.1093/aob/mcm323)
Marcell LM, Beattie GA (2002) Effect of leaf surface wax on leaf colonization by Pantoea agglomerans and Clavibacter michiganensis. Mol Plant Microbe 15:1236–1244. (PMID: 10.1094/MPMI.2002.15.12.1236)
Ni Y, Sun ZY, Huang XZ, Huang CS, Guo YJ (2015) Variations of cuticular wax in mulberry trees and their effects on gas exchange and post-harvest water loss. Acta Physiol Plant 37:112. (PMID: 10.1007/s11738-015-1856-1)
Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392. (PMID: 10.2307/2937116)
Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013) Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS ONE 8:e78613. (PMID: 10.1371/journal.pone.0078613)
Remus-Emsermann MN, Lucker S, Muller DB, Potthoff E, Daims H, Vorholt JA (2014) Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol 16:2329–2340. (PMID: 10.1111/1462-2920.12482)
Schönherr J, Baur P (1996) Cuticle permeability studies: a model for estimating leaching of plant metabolites to leaf surfaces. In: Morris CE, Nicot PC, Nguyen C (eds) Aerial plant surface microbiology. Plenum Press, New York, pp 1–23.
Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbial 10(12):828–840. (PMID: 10.1038/nrmicro2910)
Waterman P, Mole S (1994) Analysis of phenolic plant metabolites. In: Lawton JH, Likens GE (eds) Methods in ecology. Blackwell Scientific Publication, Oxford, pp 66–103.
Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755. (PMID: 10.1111/j.1365-2672.2008.03906.x)
Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of mediterranean perennial cultivars as influenced by leaf structural and chemical features. Microb Ecol 50:185–196. (PMID: 10.1007/s00248-004-0171-y)
Yu AO, Leveau JHJ, Marco ML (2020) Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Env Microbiol Rep 12(1):16–29. (PMID: 10.1111/1758-2229.12794)
Grant Information:
31672486 National Natural Science Foundation of China; 31971764 National Natural Science Foundation of China
Contributed Indexing:
Keywords: Epiphytic microbes; Leaf surface traits; Leaf–microbe interaction; Plant genotype
Substance Nomenclature:
0 (Sugars)
Entry Date(s):
Date Created: 20200918 Date Completed: 20210126 Latest Revision: 20210126
Update Code:
20240104
DOI:
10.1007/s00203-020-02025-4
PMID:
32945890
Czasopismo naukowe
To address correlations between population sizes of microbes on the leaf surfaces and leaf morphological and physicochemical properties, various leaf morphological and physicochemical features as possible predictors of microbial population sizes on the leaf surfaces of four Napier grass cultivars were assessed. Results indicated microbes except for lactic acid bacteria (LAB) preferred to colonize the leaf surfaces bearing trichomes, and their population sizes were significantly correlated with trichomes, especially for yeasts. The population sizes of microbes were positively correlated with soluble sugar content (p < 0.05). Furthermore, no significant correlation was found between population sizes of microbes and wax content, except for yeasts. The multivariate regression trees (MRT) analysis showed different genotypes of leaf-microbe system could be characterized by four-leaf attributes with soluble sugar of leaf tissues being the primary explanatory attribute. Leaves with soluble sugar content below 9.72 mg g -1 fresh weight (FW) were rarely colonized. For leaves with soluble sugar content above 9.72 mg g -1 FW, water content was the next explanatory leaf attribute, followed by wax content on the leaf surfaces. Leaves with higher water content (> 73%) were more colonized, and small microbial population was associated with higher wax content (> 10.66 mg g -1 dry matter). In conclusion, leaf chemical attributes have a higher contribution than morphological structure properties in determining population sizes of microbes on the leaf surfaces. The exuded soluble sugar and protein promote the development of microbial populations. For different genotypes of leaf-microbe system, the relationship between microbial abundance on their leaf surfaces and leaf morphological structure or physicochemical properties may be predicted by the MRT. Population sizes of microbes are primarily influenced by soluble sugar content under the water-rich conditions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies