Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Circulating tumor DNA in lung cancer: real-time monitoring of disease evolution and treatment response.

Tytuł:
Circulating tumor DNA in lung cancer: real-time monitoring of disease evolution and treatment response.
Autorzy:
Li RY; Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
Liang ZY
Źródło:
Chinese medical journal [Chin Med J (Engl)] 2020 Oct 20; Vol. 133 (20), pp. 2476-2485.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: <2015- > : Beijing : Chinese Medical Association ; produced by Wolters Kluwer
Original Publication: Peking, Chinese Medical Assn.
MeSH Terms:
Carcinoma, Non-Small-Cell Lung*
Circulating Tumor DNA*/genetics
Lung Neoplasms*/genetics
Biomarkers, Tumor/genetics ; Humans ; Mutation/genetics
References:
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70:7–30. doi: 10.3322/caac.21590. (PMID: 10.3322/caac.21590)
Osarogiagbon RU, Veronesi G, Fang W, Ekman S, Suda K, Aerts JG, et al. Early-stage NSCLC: advances in thoracic oncology 2018. J Thorac Oncol 2019; 14:968–978. doi: 10.1016/j.jtho.2019.02.029. (PMID: 10.1016/j.jtho.2019.02.029)
Nesbitt JC, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF. Survival in early-stage non-small cell lung cancer. Ann Thorac Surg 1995; 60:466–472. doi: 10.1016/0003-4975 (95)00169-l. (PMID: 10.1016/0003-4975)
Sandler AB, Nemunaitis J, Denham C, von Pawel J, Cormier Y, Gatzemeier U, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2000; 18:122–130. doi: 10.1200/jco.2000.18.1.122. (PMID: 10.1200/jco.2000.18.1.122)
Pisetsky DS, Fairhurst AM. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 2007; 40:281–284. doi: 10.1080/08916930701358826. (PMID: 10.1080/08916930701358826)
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61:1659–1665.
Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev 2016; 35:347–376. doi: 10.1007/s10555-016-9629-x. (PMID: 10.1007/s10555-016-9629-x)
Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999; 96:9236–9241. doi: 10.1073/pnas.96.16.9236. (PMID: 10.1073/pnas.96.16.9236)
Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2010; 2:20ra14doi: 10.1126/scitranslmed.3000702. (PMID: 10.1126/scitranslmed.3000702)
Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014; 20:548–554. doi: 10.1038/nm.3519. (PMID: 10.1038/nm.3519)
Schwartz R, Schäffer AA. The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet 2017; 18:213–229. doi: 10.1038/nrg.2016.170. (PMID: 10.1038/nrg.2016.170)
Amirouchene-Angelozzi N, Swanton C, Bardelli A. Tumor evolution as a therapeutic target. Cancer Discov 2017; doi: 10.1158/2159-8290.Cd-17-0343. (PMID: 10.1158/2159-8290.Cd-17-0343)
Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017; 545:446–451. doi: 10.1038/nature22364. (PMID: 10.1038/nature22364)
Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313:139–142. doi: 10.1016/s0009-8981 (01)00665-9. (PMID: 10.1016/s0009-8981)
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 2014; 24:766–769. doi: 10.1038/cr.2014.44. (PMID: 10.1038/cr.2014.44)
Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 2017; 107:100–107. doi: 10.1016/j.lungcan.2016.04.026. (PMID: 10.1016/j.lungcan.2016.04.026)
Chen K, Zhao H, Shi Y, Yang F, Wang LT, Kang G, et al. Perioperative dynamic changes in circulating tumor DNA in patients with lung cancer (DYNAMIC). Clin Cancer Res 2019; 25:7058–7067. doi: 10.1158/1078-0432.Ccr-19-1213. (PMID: 10.1158/1078-0432.Ccr-19-1213)
Duan H, Hu JL, Chen ZH, Li JH, He ZQ, Wang ZN, et al. Assessment of circulating tumor DNA in cerebrospinal fluid by whole exome sequencing to detect genomic alterations of glioblastoma. Chin Med J 2020; 133:1415–1421. doi: 10.1097/cm9.0000000000000843. (PMID: 10.1097/cm9.0000000000000843)
Leung F, Kulasingam V, Diamandis EP, Hoon DS, Kinzler K, Pantel K, et al. Circulating tumor DNA as a cancer biomarker: fact or fiction? Clin Chem 2016; 62:1054–1060. doi: 10.1373/clinchem.2016.260331. (PMID: 10.1373/clinchem.2016.260331)
Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014; 346:256–259. doi: 10.1126/science.1256930. (PMID: 10.1126/science.1256930)
Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11:426–437. doi: 10.1038/nrc3066. (PMID: 10.1038/nrc3066)
Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Anker P, Herrera-Goepfert R, Medina-Velázquez LA, et al. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS One 2012; 7:e52754doi: 10.1371/journal.pone.0052754. (PMID: 10.1371/journal.pone.0052754)
Song Y, Hu C, Xie Z, Wu L, Zhu Z, Rao C, et al. Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort. Transl Lung Cancer Res 2020; 9:269–279. doi: 10.21037/tlcr.2020.03.17. (PMID: 10.21037/tlcr.2020.03.17)
Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497:108–112. doi: 10.1038/nature12065. (PMID: 10.1038/nature12065)
Ross JS, Cronin M. Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 2011; 136:527–539. doi: 10.1309/ajcpr1svt1vhugxw. (PMID: 10.1309/ajcpr1svt1vhugxw)
Komatsubara KM, Sacher AG. Circulating tumor DNA as a liquid biopsy: current clinical applications and future directions. Oncology (Williston Park) 2017; 31:618–627.
Sacher AG, Paweletz C, Dahlberg SE, Alden RS, O’Connell A, Feeney N, et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2016; 2:1014–1022. doi: 10.1001/jamaoncol.2016.0173. (PMID: 10.1001/jamaoncol.2016.0173)
Paweletz CP, Sacher AG, Raymond CK, Alden RS, O’Connell A, Mach SL, et al. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res 2016; 22:915–922. doi: 10.1158/1078-0432.Ccr-15-1627-t. (PMID: 10.1158/1078-0432.Ccr-15-1627-t)
Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J, et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res 2011; 17:7808–7815. doi: 10.1158/1078-0432.Ccr-11-1712. (PMID: 10.1158/1078-0432.Ccr-11-1712)
Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 2009; 361:958–967. doi: 10.1056/NEJMoa0904554. (PMID: 10.1056/NEJMoa0904554)
Gautschi O, Huegli B, Ziegler A, Gugger M, Heighway J, Ratschiller D, et al. Origin and prognostic value of circulating KRAS mutations in lung cancer patients. Cancer Lett 2007; 254:265–273. doi: 10.1016/j.canlet.2007.03.008. (PMID: 10.1016/j.canlet.2007.03.008)
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6:224ra224doi: 10.1126/scitranslmed.3007094. (PMID: 10.1126/scitranslmed.3007094)
Li Y, Lv J, Wan S, Xin J, Xie T, Li T, et al. High sensitive and non-invasive ctDNAs sequencing facilitate clinical diagnosis and clinical guidance of non-small cell lung cancer patient: a time course study. Front Oncol 2018; 8:491doi: 10.3389/fonc.2018.00491. (PMID: 10.3389/fonc.2018.00491)
Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017; 9:eaan2415doi: 10.1126/scitranslmed.aan2415. (PMID: 10.1126/scitranslmed.aan2415)
Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018; 359:926–930. doi: 10.1126/science.aar3247. (PMID: 10.1126/science.aar3247)
Chen KZ, Lou F, Yang F, Zhang JB, Ye H, Chen W, et al. Circulating tumor DNA detection in early-stage non-small cell lung cancer patients by targeted sequencing. Sci Rep 2016; 6:31985doi: 10.1038/srep31985. (PMID: 10.1038/srep31985)
Frenel JS, Carreira S, Goodall J, Roda D, Perez-Lopez R, Tunariu N, et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin Cancer Res 2015; 21:4586–4596. doi: 10.1158/1078-0432.Ccr-15-0584. (PMID: 10.1158/1078-0432.Ccr-15-0584)
Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol 2016; 34:547–555. doi: 10.1038/nbt.3520. (PMID: 10.1038/nbt.3520)
Li L, Wang Y, Shi W, Zhu M, Liu Z, Luo N, et al. Serial ultra-deep sequencing of circulating tumor DNA reveals the clonal evolution in non-small cell lung cancer patients treated with anti-PD1 immunotherapy. Cancer Med 2019; 8:7669–7678. doi: 10.1002/cam4.2632. (PMID: 10.1002/cam4.2632)
Schwaederle M, Husain H, Fanta PT, Piccioni DE, Kesari S, Schwab RB, et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay. Oncotarget 2016; 7:9707–9717. doi: 10.18632/oncotarget.7110. (PMID: 10.18632/oncotarget.7110)
Kim T, Kim EY, Lee SH, Kwon DS, Kim A, Chang YS. Presence of mEGFR ctDNA predicts a poor clinical outcome in lung adenocarcinoma. Thorac Cancer 2019; 10:2267–2273. doi: 10.1111/1759-7714.13219. (PMID: 10.1111/1759-7714.13219)
Mok T, Wu YL, Lee JS, Yu CJ, Sriuranpong V, Sandoval-Tan J, et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res 2015; 21:3196–3203. doi: 10.1158/1078-0432.Ccr-14-2594. (PMID: 10.1158/1078-0432.Ccr-14-2594)
Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget 2016; 7:6984–6993. doi: 10.18632/oncotarget.6874. (PMID: 10.18632/oncotarget.6874)
Fan G, Zhang K, Ding J, Li J. Prognostic value of EGFR and KRAS in circulating tumor DNA in patients with advanced non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:33922–33932. doi: 10.18632/oncotarget.15412. (PMID: 10.18632/oncotarget.15412)
Mao C, Yuan JQ, Yang ZY, Fu XH, Wu XY, Tang JL. Blood as a substitute for tumor tissue in detecting EGFR mutations for guiding EGFR TKIs treatment of nonsmall cell lung cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2015; 94:e775doi: 10.1097/md.0000000000000775. (PMID: 10.1097/md.0000000000000775)
Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BG, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 2012; 18:2391–2401. doi: 10.1158/1078-0432.Ccr-11-3148. (PMID: 10.1158/1078-0432.Ccr-11-3148)
Rothwell DG, Ayub M, Cook N, Thistlethwaite F, Carter L, Dean E, et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat Med 2019; 25:738–743. doi: 10.1038/s41591-019-0380-z. (PMID: 10.1038/s41591-019-0380-z)
Kutilin DS, Airapetova TG, Anistratov PA, Pyltsin SP, Leiman IA, Karnaukhov NS, et al. Copy number variation in tumor cells and extracellular DNA in patients with lung adenocarcinoma. Bull Exp Biol Med 2019; 167:771–778. doi: 10.1007/s10517-019-04620-y. (PMID: 10.1007/s10517-019-04620-y)
Peng H, Lu L, Zhou Z, Liu J, Zhang D, Nan K, et al. CNV detection from circulating tumor DNA in late stage non-small cell lung cancer patients. Genes (Basel) 2019; 10:926doi: 10.3390/genes10110926. (PMID: 10.3390/genes10110926)
Suzuki M, Yoshino I. Aberrant methylation in non-small cell lung cancer. Surg Today 2010; 40:602–607. doi: 10.1007/s00595-009-4094-6. (PMID: 10.1007/s00595-009-4094-6)
Tang C, Lee WC, Reuben A, Chang L, Tran H, Little L, et al. Immune and circulating tumor DNA profiling after radiation treatment for oligometastatic non-small cell lung cancer: translational correlatives from a mature randomized phase II trial. Int J Radiat Oncol Biol Phys 2020; 106:349–357. doi: 10.1016/j.ijrobp.2019.10.038. (PMID: 10.1016/j.ijrobp.2019.10.038)
Park CK, Cho HJ, Choi YD, Oh IJ, Kim YC. A phase II trial of osimertinib in the second-line treatment of non-small cell lung cancer with the EGFR T790M mutation, detected from circulating tumor DNA: LiquidLung-O-Cohort 2. Cancer Res Treat 2019; 51:777–787. doi: 10.4143/crt.2018.387. (PMID: 10.4143/crt.2018.387)
Zhang S, Zhu L, Xia B, Chen E, Zhao Q, Zhang X, et al. Epidermal growth factor receptor (EGFR) T790M mutation identified in plasma indicates failure sites and predicts clinical prognosis in non-small cell lung cancer progression during first-generation tyrosine kinase inhibitor therapy: a prospective observational study. Cancer Commun (Lond) 2018; 38:28doi: 10.1186/s40880-018-0303-2. (PMID: 10.1186/s40880-018-0303-2)
Wu YL, Herbst RS, Mann H, Rukazenkov Y, Marotti M, Tsuboi M. ADAURA: phase III, double-blind, randomized study of osimertinib versus placebo in EGFR mutation-positive early-stage NSCLC after complete surgical resection. Clin Lung Cancer 2018; 19:e533–e536. doi: 10.1016/j.cllc.2018.04.004. (PMID: 10.1016/j.cllc.2018.04.004)
Wei F, Strom CM, Cheng J, Lin CC, Hsu CY, Soo Hoo GW, et al. Electric field-induced release and measurement liquid biopsy for noninvasive early lung cancer assessment. J Mol Diagn 2018; 20:738–742. doi: 10.1016/j.jmoldx.2018.06.008. (PMID: 10.1016/j.jmoldx.2018.06.008)
Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol 2018; 36:841–849. doi: 10.1200/jco.2017.74.7576. (PMID: 10.1200/jco.2017.74.7576)
Odogwu L, Mathieu L, Goldberg KB, Blumenthal GM, Larkins E, Fiero MH, et al. FDA benefit-risk assessment of osimertinib for the treatment of metastatic non-small cell lung cancer harboring epidermal growth factor receptor T790M mutation. Oncologist 2018; 23:353–359. doi: 10.1634/theoncologist.2017-0425. (PMID: 10.1634/theoncologist.2017-0425)
Krug AK, Enderle D, Karlovich C, Priewasser T, Bentink S, Spiel A, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol 2018; 29:700–706. doi: 10.1093/annonc/mdx765. (PMID: 10.1093/annonc/mdx765)
Helman E, Nguyen M, Karlovich CA, Despain D, Choquette AK, Spira AI, et al. Cell-free DNA next-generation sequencing prediction of response and resistance to third-generation EGFR inhibitor. Clin Lung Cancer 2018; 19:518–530.e7. doi: 10.1016/j.cllc.2018.07.008. (PMID: 10.1016/j.cllc.2018.07.008)
Wang J, Bai H, Hong C, Wang J, Mei TH. Analyzing epidermal growth factor receptor mutation status changes in advanced non-small-cell lung cancer at different sampling time-points of blood within one day. Thorac Cancer 2017; 8:312–319. doi: 10.1111/1759-7714.12443. (PMID: 10.1111/1759-7714.12443)
Li T, Piperdi B, Walsh WV, Kim M, Beckett LA, Gucalp R, et al. Randomized phase 2 trial of pharmacodynamic separation of pemetrexed and intercalated erlotinib versus pemetrexed alone for advanced nonsquamous, non-small-cell lung cancer. Clin Lung Cancer 2017; 18:60–67. doi: 10.1016/j.cllc.2016.10.003. (PMID: 10.1016/j.cllc.2016.10.003)
Han JY, Choi JJ, Kim JY, Han YL, Lee GK. PNA clamping-assisted fluorescence melting curve analysis for detecting EGFR and KRAS mutations in the circulating tumor DNA of patients with advanced non-small cell lung cancer. BMC Cancer 2016; 16:627doi: 10.1186/s12885-016-2678-2. (PMID: 10.1186/s12885-016-2678-2)
Vansteenkiste JF, Canon JL, De Braud F, Grossi F, De Pas T, Gray JE, et al. Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the phase II BASALT-1 study. J Thorac Oncol 2015; 10:1319–1327. doi: 10.1097/jto.0000000000000607. (PMID: 10.1097/jto.0000000000000607)
Paz-Ares L, Hirsh V, Zhang L, de Marinis F, Yang JC, Wakelee HA, et al. Monotherapy administration of sorafenib in patients with non-small cell lung cancer (MISSION) trial: a phase III, multicenter, placebo-controlled trial of sorafenib in patients with relapsed or refractory predominantly nonsquamous non-small-cell lung cancer after 2 or 3 previous treatment regimens. J Thorac Oncol 2015; 10:1745–1753. doi: 10.1097/jto.0000000000000693. (PMID: 10.1097/jto.0000000000000693)
Qian X, Liu J, Sun Y, Wang M, Lei H, Luo G, et al. Circulating cell-free DNA has a high degree of specificity to detect exon 19 deletions and the single-point substitution mutation L858R in non-small cell lung cancer. Oncotarget 2016; 7:29154–29165. doi: 10.18632/oncotarget.8684. (PMID: 10.18632/oncotarget.8684)
Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer 2014; 110:55–62. doi: 10.1038/bjc.2013.721. (PMID: 10.1038/bjc.2013.721)
Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J Thorac Oncol 2014; 9:1345–1353. doi: 10.1097/jto.0000000000000263. (PMID: 10.1097/jto.0000000000000263)
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3:75ra26doi: 10.1126/scitranslmed.3002003. (PMID: 10.1126/scitranslmed.3002003)
Chabon JJ, Simmons AD, Lovejoy AF, Esfahani MS, Newman AM, Haringsma HJ, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun 2016; 7:11815doi: 10.1038/ncomms11815. (PMID: 10.1038/ncomms11815)
Kuang Y, Rogers A, Yeap BY, Wang L, Makrigiorgos M, Vetrand K, et al. Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res 2009; 15:2630–2636. doi: 10.1158/1078-0432.Ccr-08-2592. (PMID: 10.1158/1078-0432.Ccr-08-2592)
Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 2013; 5:30doi: 10.1186/gm434. (PMID: 10.1186/gm434)
Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 2012; 4:162ra154doi: 10.1126/scitranslmed.3004742. (PMID: 10.1126/scitranslmed.3004742)
Lanman RB, Mortimer SA, Zill OA, Sebisanovic D, Lopez R, Blau S, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One 2015; 10:e0140712doi: 10.1371/journal.pone.0140712. (PMID: 10.1371/journal.pone.0140712)
Taylor F, Bradford J, Woll PJ, Teare D, Cox A. Unbiased detection of somatic copy number aberrations in cfDNA of lung cancer cases and high-risk controls with low coverage whole genome sequencing. Adv Exp Med Biol 2016; 924:29–32. doi: 10.1007/978-3-319-42044-8_6. (PMID: 10.1007/978-3-319-42044-8_6)
Chen X, Chang CW, Spoerke JM, Yoh KE, Kapoor V, Baudo C, et al. Low-pass whole-genome sequencing of circulating cell-free DNA demonstrates dynamic changes in genomic copy number in a squamous lung cancer clinical cohort. Clin Cancer Res 2019; 25:2254–2263. doi: 10.1158/1078-0432.Ccr-18-1593. (PMID: 10.1158/1078-0432.Ccr-18-1593)
Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017; 7:1394–1403. doi: 10.1158/2159-8290.Cd-17-0716. (PMID: 10.1158/2159-8290.Cd-17-0716)
Costantini A, Takam Kamga P, Dumenil C, Chinet T, Emile JF, Giroux Leprieur E. Plasma biomarkers and immune checkpoint inhibitors in non-small cell lung cancer: new tools for better patient selection? Cancers (Basel) 2019; 11:1269doi: 10.3390/cancers11091269. (PMID: 10.3390/cancers11091269)
Berland L, Heeke S, Humbert O, Macocco A, Long-Mira E, Lassalle S, et al. Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors. J Thorac Dis 2019; 11:S71–S80. doi: 10.21037/jtd.2018.11.102. (PMID: 10.21037/jtd.2018.11.102)
Greillier L, Tomasini P, Barlesi F. The clinical utility of tumor mutational burden in non-small cell lung cancer. Transl Lung Cancer Res 2018; 7:639–646. doi: 10.21037/tlcr.2018.10.08. (PMID: 10.21037/tlcr.2018.10.08)
Hendriks LE, Rouleau E, Besse B. Clinical utility of tumor mutational burden in patients with non-small cell lung cancer treated with immunotherapy. Transl Lung Cancer Res 2018; 7:647–660. doi: 10.21037/tlcr.2018.09.22. (PMID: 10.21037/tlcr.2018.09.22)
Wang Z, Duan J, Cai S, Han M, Dong H, Zhao J, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol 2019; 5:696–702. doi: 10.1001/jamaoncol.2018.7098. (PMID: 10.1001/jamaoncol.2018.7098)
Gandara DR, Paul SM, Kowanetz M, Schleifman E, Zou W, Li Y, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 2018; 24:1441–1448. doi: 10.1038/s41591-018-0134-3. (PMID: 10.1038/s41591-018-0134-3)
Peters S, Cho BC, Reinmuth N, Lee KH, Luft A, Ahn M-J, et al. Abstract CT074: tumor mutational burden (TMB) as a biomarker of survival in metastatic non-small cell lung cancer (mNSCLC): blood and tissue TMB analysis from MYSTIC, a phase III study of first-line durvalumab ± tremelimumab vs chemotherapy. Cancer Res 2019; 79:CT074doi: 10.1158/1538-7445.Am2019-ct074. (PMID: 10.1158/1538-7445.Am2019-ct074)
Blackhall F, Frese KK, Simpson K, Kilgour E, Brady G, Dive C. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? Lancet Oncol 2018; 19:e470–e481. doi: 10.1016/s1470-2045 (18)30455-8. (PMID: 10.1016/s1470-2045)
Osterlind K, Andersen PK. Prognostic factors in small cell lung cancer: multivariate model based on 778 patients treated with chemotherapy with or without irradiation. Cancer Res 1986; 46:4189–4194.
Sabari JK, Lok BH, Laird JH, Poirier JT, Rudin CM. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol 2017; 14:549–561. doi: 10.1038/nrclinonc.2017.71. (PMID: 10.1038/nrclinonc.2017.71)
George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015; 524:47–53. doi: 10.1038/nature14664. (PMID: 10.1038/nature14664)
Almodovar K, Iams WT, Meador CB, Zhao Z, York S, Horn L, et al. Longitudinal cell-free DNA analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J Thorac Oncol 2018; 13:112–123. doi: 10.1016/j.jtho.2017.09.1951. (PMID: 10.1016/j.jtho.2017.09.1951)
Jiang P, Lo YMD. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 2016; 32:360–371. doi: 10.1016/j.tig.2016.03.009. (PMID: 10.1016/j.tig.2016.03.009)
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 2017; 17:223–238. doi: 10.1038/nrc.2017.7. (PMID: 10.1038/nrc.2017.7)
Substance Nomenclature:
0 (Biomarkers, Tumor)
0 (Circulating Tumor DNA)
Entry Date(s):
Date Created: 20200922 Date Completed: 20210514 Latest Revision: 20210514
Update Code:
20240105
PubMed Central ID:
PMC7575184
DOI:
10.1097/CM9.0000000000001097
PMID:
32960843
Czasopismo naukowe
Lung cancer is one of the leading causes of all cancer-related deaths. Circulating tumor DNA (ctDNA) is released from apoptotic and necrotic tumor cells. Several sensitive techniques have been invented and adapted to quantify ctDNA genomic alterations. Applications of ctDNA in lung cancer include early diagnosis and detection, prognosis prediction, detecting mutations and structural alterations, minimal residual disease, tumor mutational burden, and tumor evolution tracking. Compared to surgical biopsy and radiographic imaging, the advantages of ctDNA are that it is a non-invasive procedure, allows real-time monitoring, and has relatively high sensitivity and specificity. Given the massive research on non-small cell lung cancer, attention should be paid to small cell lung cancer.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies