Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease.

Tytuł:
Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease.
Autorzy:
Hou K; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.; Center for Nanochemistry, Peking University, Beijing, 100871, China.; University of Chinese Academy of Sciences, Beijing, 100049, China.
Zhao J; MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
Wang H; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Li B; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
Li K; Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, 150086, China.
Shi X; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Wan K; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Ai J; Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, 150086, China.
Lv J; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Wang D; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Huang Q; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Wang H; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
Cao Q; Department of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA.
Liu S; MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China. .
Tang Z; CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China. .; University of Chinese Academy of Sciences, Beijing, 100049, China. .
Źródło:
Nature communications [Nat Commun] 2020 Sep 22; Vol. 11 (1), pp. 4790. Date of Electronic Publication: 2020 Sep 22.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Alzheimer Disease/*drug therapy
Amyloid beta-Peptides/*drug effects
Gold/*pharmacology
Memory Disorders/*drug therapy
Metal Nanoparticles/*chemistry
Peptide Fragments/*drug effects
Alzheimer Disease/metabolism ; Amyloid beta-Peptides/metabolism ; Animals ; Blood-Brain Barrier/metabolism ; Brain/metabolism ; Cell Survival/drug effects ; Disease Models, Animal ; Male ; Memory Disorders/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Docking Simulation ; Peptide Fragments/metabolism ; Stereoisomerism
References:
Patterson, C. World Alzheimer Report 2018—The State Of The Art Of Dementia Research: New Frontiers. (Alzheimer’s Disease International (ADI), London, UK, 2018).
Wang, J., Gu, B. J., Masters, C. L. & Wang, Y. J. A systemic view wof Alzheimer disease—insights from amyloid-beta metabolism beyond the brain. Nat. Rev. Neurol. 13, 612–623 (2017). (PMID: 2896020910.1038/nrneurol.2017.111)
Barnham, K. J. & Bush, A. I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 43, 6727–6749 (2014). (PMID: 2509927610.1039/C4CS00138A)
Barnham, K. J., Masters, C. L. & Bush, A. I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004). (PMID: 1503173410.1038/nrd1330)
Shi, Y. & Holtzman, D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat. Rev. Immunol. 18, 759–772 (2018). (PMID: 30140051642548810.1038/s41577-018-0051-1)
Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012). (PMID: 22424229335374510.1016/j.cell.2012.02.022)
Jakob-Roetne, R. & Jacobsen, H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew. Chem. Int. Ed. 48, 3030–3059 (2009). (PMID: 10.1002/anie.200802808)
Doig, A. J. & Derreumaux, P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr. Opin. Struct. Biol. 30, 50–56 (2015). (PMID: 2555930610.1016/j.sbi.2014.12.004)
Soto, C. et al. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat. Med. 4, 822–826 (1998). (PMID: 966237410.1038/nm0798-822)
Schneider, L. S. et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J. Intern. Med. 275, 251–283 (2014). (PMID: 24605808395675210.1111/joim.12191)
Karran, E., Mercken, M. & Strooper, B. D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011). (PMID: 2185278810.1038/nrd3505)
Linse, S. et al. Nucleation of protein fibrillation by nanoparticles. Proc. Natl Acad. Sci. USA 104, 8691–8696 (2007). (PMID: 1748566810.1073/pnas.0701250104)
Kim, Y., Park, J.-H., Lee, H. & Nam, J.-M. How do the size, charge and shape of nanoparticles affect amyloid beta aggregation on brain lipid bilayer? Sci. Rep. 6, 19548 (2016). (PMID: 26782664472609410.1038/srep19548)
Liao, Y. H. et al. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8, 3631–3639 (2012). (PMID: 2291554710.1002/smll.201201068)
Cabaleiro-Lago, C. et al. Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 130, 15437–15443 (2008). (PMID: 1895405010.1021/ja8041806)
Skaat, H., Chen, R., Grinberg, I. & Margel, S. Engineered polymer nanoparticles containing hydrophobic dipeptide for inhibition of amyloid-β fibrillation. Biomacromolecules 13, 2662–2670 (2012). (PMID: 2289767910.1021/bm3011177)
Zhang, J. et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl. Mater. Interfaces 6, 8475–8487 (2014). (PMID: 2475852010.1021/am501341u)
Dreaden, E. C. et al. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012). (PMID: 2210965710.1039/C1CS15237H)
Shilo, M. et al. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnol. 13, 1–7 (2015). (PMID: 10.1186/s12951-015-0075-7)
Xiong, N. et al. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity. Small 13, 1601666 (2017). (PMID: 10.1002/smll.201601666)
Pocernich, C. B. & Butterfield, D. A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim. Biophys. Acta 1822, 625–630 (2012). (PMID: 2201547110.1016/j.bbadis.2011.10.00322015471)
Smeyne, M. & Smeyne, R. J. Glutathione metabolism and Parkinson’s disease. Free Radic. Biol. Med. 62, 13–25 (2013). (PMID: 23665395373673610.1016/j.freeradbiomed.2013.05.001)
Geldenhuys, W. et al. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J. Drug Target. 19, 837–845 (2011). (PMID: 2169265010.3109/1061186X.2011.58943521692650)
Qing, G. et al. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. J. Am. Chem. Soc. 136, 10736–10742 (2014). (PMID: 2501103510.1021/ja504962625011035)
Guan, Y. et al. Stereochemistry and amyloid inhibition: asymmetric triplex metallohelices enantioselectively bind to Aβ peptide. Sci. Adv. 4, eaao6718 (2018). (PMID: 29372182577502510.1126/sciadv.aao6718)
Gao, G. et al. The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-beta fibrillation. Nanoscale 9, 4107–4113 (2017). (PMID: 2827656110.1039/C7NR00699C28276561)
Shaw, C. P., Middleton, D. A., Volk, M. & Lévy, R. Amyloid-derived peptide forms self-assembled monolayers on gold nanoparticle with a curvature-dependent β-sheet structure. ACS Nano 6, 1416–1426 (2012). (PMID: 2224294710.1021/nn204214x)
Auer, S., Trovato, A. & Vendruscolo, M. A Condensation-ordering mechanism in nanoparticle-catalyzed peptide aggregation. PLoS Comput. Biol. 5, e1000458 (2009). (PMID: 19680431271521610.1371/journal.pcbi.1000458)
Kumar, A. et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 8, 4205–4220 (2014). (PMID: 2473055710.1021/nn500152u)
Mao, X., Li, Z. P. & Tang, Z. Y. One pot synthesis of monodispersed L-glutathione stabilized gold nanoparticles for the detection of Pb ions. Front. Mater. Sci. 5, 322–328 (2011). (PMID: 10.1007/s11706-011-0118-4)
Yan, W. et al. A super highly sensitive glucose biosensor based on Au . Biosens. Bioelectron. 23, 925–931 (2008). (PMID: 1809382110.1016/j.bios.2007.09.002)
Jan, A., Gokce, O., Luthi-Carter, R. & Lashuel, H. A. The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid-β aggregation, fibrillogenesis, and toxicity. J. Biol. Chem. 283, 28176–28189 (2008). (PMID: 18694930266138910.1074/jbc.M803159200)
Streich, C. et al. Characterizing the effect of multivalent conjugates composed of Aβ-specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation. ACS Nano 10, 7582–7597 (2016). (PMID: 2740411410.1021/acsnano.6b02627)
Sreerama, N. & Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 (2000). (PMID: 1111227110.1006/abio.2000.4880)
Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010). (PMID: 20383142292202110.1038/nsmb.1799)
Gao, N. et al. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat. Commun. 5, 3422 (2014). (PMID: 2459520610.1038/ncomms4422)
Goy-López, S. et al. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28, 9113–9126 (2012). (PMID: 2243966410.1021/la300402w)
Spencer, R. K., Li, H. & Nowick, J. S. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Aβ17-36. J. Am. Chem. Soc. 136, 5595–5598 (2014). (PMID: 24669800400424410.1021/ja5017409)
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (PMID: 10.1103/PhysRevB.54.11169)
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). (PMID: 19399780276063810.1002/jcc.21256)
Cao, Q. et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat. Chem. 10, 1213–1221 (2018). (PMID: 30297750625057810.1038/s41557-018-0147-z)
Chang, K. L., Pee, H. N., Yang, S. & Ho, P. C. Influence of drug transporters and stereoselectivity on the brain penetration of pioglitazone as a potential medicine against Alzheimer’s disease. Sci. Rep. 5, 9000 (2015). (PMID: 25760794539090310.1038/srep09000)
Sela, H. et al. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J. Nanobiotechnol. 13, 71 (2015). (PMID: 10.1186/s12951-015-0133-1)
Drummond, E. & Wisniewski, T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 133, 155–175 (2017). (PMID: 2802571510.1007/s00401-016-1662-x28025715)
Johnson-Wood, K. et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 1550–1555 (1997). (PMID: 903709110.1073/pnas.94.4.15509037091)
Zhang, R. et al. Physical gelation of polypeptide-polyelectrolyte-polypeptide (ABA) copolymer in solution. Macromolecules 45, 6201–6209 (2012). (PMID: 10.1021/ma300663p)
Grant Information:
United States HHMI Howard Hughes Medical Institute
Substance Nomenclature:
0 (Amyloid beta-Peptides)
0 (Peptide Fragments)
0 (amyloid beta-protein (1-42))
7440-57-5 (Gold)
Entry Date(s):
Date Created: 20200923 Date Completed: 20201013 Latest Revision: 20210922
Update Code:
20240105
PubMed Central ID:
PMC7509831
DOI:
10.1038/s41467-020-18525-2
PMID:
32963242
Czasopismo naukowe
Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer's disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies