Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification of a distinct association fiber tract "IPS-FG" to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography.

Tytuł:
Identification of a distinct association fiber tract "IPS-FG" to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography.
Autorzy:
Jitsuishi T; Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
Yamaguchi A; Department of Functional Anatomy, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .
Źródło:
Scientific reports [Sci Rep] 2020 Sep 23; Vol. 10 (1), pp. 15475. Date of Electronic Publication: 2020 Sep 23.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Parietal Lobe/*anatomy & histology
Temporal Lobe/*anatomy & histology
White Matter/*anatomy & histology
Aged ; Aged, 80 and over ; Connectome ; Diffusion Tensor Imaging ; Dissection/methods ; Humans ; Middle Aged ; Neural Pathways/anatomy & histology ; Neural Pathways/diagnostic imaging ; Neural Pathways/physiology ; Parietal Lobe/diagnostic imaging ; Parietal Lobe/physiology ; Temporal Lobe/diagnostic imaging ; Temporal Lobe/physiology ; White Matter/diagnostic imaging ; White Matter/physiology
References:
Hwang, E. J., Hauschild, M., Wilke, M. & Andersen, R. A. Spatial and temporal eye–hand coordination relies on the parietal reach region. J. Neurosci. 34, 12884–12892 (2014). (PMID: 25232123416616710.1523/JNEUROSCI.3719-13.2014)
Rizzo, J.-R. et al. The intersection between ocular and manual motor control: Eye-hand coordination in acquired brain injury. Front. Neurol. 8, 227 (2017). (PMID: 28620341545150510.3389/fneur.2017.00227)
Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999). (PMID: 1039860310.1126/science.285.5425.257)
Andersen, R. A., Andersen, K. N., Hwang, E. J. & Hauschild, M. Optic ataxia: From Balint’s syndrome to the parietal reach region. Neuron 81, 967–983 (2014). (PMID: 24607223400074110.1016/j.neuron.2014.02.025)
Kay, K. N. & Yeatman, J. D. Bottom-up and top-down computations in word- and face-selective cortex. eLife 6, e22341 (2017). (PMID: 28226243535898110.7554/eLife.22341)
Caspers, J. et al. Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus. Hum. Brain Mapp. 35, 2754–2767 (2014). (PMID: 2403890210.1002/hbm.22364)
Grill-Spector, K. & Weiner, K. S. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15, 536–548 (2014). (PMID: 24962370414342010.1038/nrn3747)
Martino, J. et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: A fiber dissection and DTI tractography study. Brain Struct. Funct. 218, 105–121 (2013). (PMID: 2242214810.1007/s00429-012-0386-5)
Wu, Y., Sun, D., Wang, Y., Wang, Y. & Wang, Y. Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res. 1646, 152–159 (2016). (PMID: 2723586410.1016/j.brainres.2016.05.046)
Bullock, D. et al. Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct. Funct. 224, 2631–2660 (2019). (PMID: 3134215710.1007/s00429-019-01907-8)
Kamali, A., Sair, H. I., Radmanesh, A. & Hasan, K. M. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience 277, 577–583 (2014). (PMID: 2508630810.1016/j.neuroscience.2014.07.035)
Jitsuishi, T. et al. White matter dissection and structural connectivity of the human vertical occipital fasciculus to link vision-associated brain cortex. Sci. Rep. 10, 820 (2020). (PMID: 31965011697293310.1038/s41598-020-57837-7)
Yeatman, J. D. et al. The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. PNAS 111, E5214–E5223 (2014). (PMID: 2540431010.1073/pnas.1418503111)
Catani, M., Jones, D. K. & Ffytche, D. H. Perisylvian language networks of the human brain. Ann. Neurol. 57, 8–16 (2005). (PMID: 1559738310.1002/ana.20319)
Weiner, K. S., Yeatman, J. D. & Wandell, B. A. The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97, 274–276 (2017). (PMID: 2713224310.1016/j.cortex.2016.03.012)
Huntgeburth, S. C. & Petrides, M. Morphological patterns of the collateral sulcus in the human brain. Eur. J. Neurosci. 35, 1295–1311 (2012). (PMID: 2251225810.1111/j.1460-9568.2012.08031.x)
Yeh, F.-C. & Tseng, W.-Y.I. NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58, 91–99 (2011). (PMID: 2170417110.1016/j.neuroimage.2011.06.021)
Van Essen, D. C. et al. The WU-Minn human connectome project: An overview. Neuroimage 80, 62–79 (2013). (PMID: 3724347372434710.1016/j.neuroimage.2013.05.041)
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016). (PMID: 27437579499012710.1038/nature18933)
Tournier, J.-D. et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019). (PMID: 3147335210.1016/j.neuroimage.2019.116137)
Panesar, S. S., Yeh, F.-C., Jacquesson, T., Hula, W. & Fernandez-Miranda, J. C. A. Quantitative tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus. Front. Neuroanat. 12, 47 (2018). (PMID: 29922132599612510.3389/fnana.2018.00047)
Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009). (PMID: 19541911275213210.1101/gr.092759.109)
Schurr, R., Filo, S. & Mezer, A. A. Tractography delineation of the vertical occipital fasciculus using quantitative T1 mapping. Neuroimage 202, 116121 (2019). (PMID: 3147225210.1016/j.neuroimage.2019.116121)
Schmahmann, J. D. et al. Association fibre pathways of the brain: Parallel observations from diffusion spectrum imaging and autoradiography. Brain 130, 630–653 (2007). (PMID: 10.1093/brain/awl359)
Nasr, S. et al. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011). (PMID: 21957240348918610.1523/JNEUROSCI.2792-11.2011)
Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J. Comp. Neurol. 287, 393–441 (1989). (PMID: 247740510.1002/cne.902870402)
Borra, E. & Luppino, G. Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex 97, 306–326 (2017). (PMID: 2804161510.1016/j.cortex.2016.12.007)
Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. (Regul. Ed.) 17, 379–390 (2013). (PMID: 10.1016/j.tics.2013.06.009)
Baker, C. M. et al. A connectomic atlas of the human cerebrum-chapter 6: The temporal lobe. Oper. Neurosurg. (Hagerstown) 15, S245–S294 (2018). (PMID: 10.1093/ons/opy260)
Heilman, K. M. & Van Den Abell, T. Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30, 327–330 (1980). (PMID: 718903710.1212/WNL.30.3.327)
Vallar, G. & Perani, D. The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622 (1986). (PMID: 378564910.1016/0028-3932(86)90001-1)
Driver, J. & Mattingley, J. B. Parietal neglect and visual awareness. Nat. Neurosci. 1, 17–22 (1998). (PMID: 1019510310.1038/217)
Conway, B. R. Color signals through dorsal and ventral visual pathways. Vis. Neurosci. 31, 197–209 (2014). (PMID: 2410341710.1017/S0952523813000382)
Zhang, B., He, S. & Weng, X. Localization and functional characterization of an occipital visual word form sensitive area. Sci. Rep. 8, 6723 (2018). (PMID: 5928127592812710.1038/s41598-018-25029-z)
Mochizuki, H. & Ohtomo, R. Pure alexia in Japanese and agraphia without alexia in Kanji: The ability dissociation between reading and writing in Kanji vs Kana. Arch. Neurol. 45, 1157–1159 (1988). (PMID: 317853410.1001/archneur.1988.00520340111020)
Kawahata, N., Nagata, K. & Shishido, F. Alexia with agraphia due to the left posterior inferior temporal lobe lesion–neuropsychological analysis and its pathogenetic mechanisms. Brain Lang. 33, 296–310 (1988). (PMID: 325877710.1016/0093-934X(88)90070-33258777)
Connolly, J. D., Vuong, Q. C. & Thiele, A. Gaze-dependent topography in human posterior parietal cortex. Cereb. Cortex 25, 1519–1526 (2015). (PMID: 2435197710.1093/cercor/bht34424351977)
Bray, S., Arnold, A. E. G. F., Iaria, G. & MacQueen, G. Structural connectivity of visuotopic intraparietal sulcus. Neuroimage 82, 137–145 (2013). (PMID: 2372172510.1016/j.neuroimage.2013.05.08023721725)
Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291 (2000). (PMID: 1070026210.1038/7299910700262)
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002). (PMID: 1199475210.1038/nrn755)
Lauritzen, T. Z., D’Esposito, M., Heeger, D. J. & Silver, M. A. Top–down flow of visual spatial attention signals from parietal to occipital cortex. J. Vis. 9, 1811–1814 (2009). (PMID: 10.1167/9.13.18)
Kayser, A. S., Buchsbaum, B. R., Erickson, D. T. & D’Esposito, M. The functional anatomy of a perceptual decision in the human brain. J. Neurophysiol. 103, 1179–1194 (2010). (PMID: 2003224710.1152/jn.00364.2009)
Kayser, A. S., Erickson, D. T., Buchsbaum, B. R. & D’Esposito, M. Neural representations of relevant and irrelevant features in perceptual decision making. J. Neurosci. 30, 15778–15789 (2010). (PMID: 21106817302059210.1523/JNEUROSCI.3163-10.2010)
Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000). (PMID: 1100646410.1016/S0166-2236(00)01633-7)
Assem, M., Glasser, M. F., Van Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020). (PMID: 32244253732580110.1093/cercor/bhaa023)
Ester, E. F., Sprague, T. C. & Serences, J. T. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87, 893–905 (2015). (PMID: 26257053454568310.1016/j.neuron.2015.07.013)
Silva, S. M. & Andrade, J. P. Neuroanatomy: The added value of the Klingler method. Ann. Anat. 208, 187–193 (2016). (PMID: 2732912210.1016/j.aanat.2016.06.002)
Farquharson, S. et al. White matter fiber tractography: Why we need to move beyond DTI. J. Neurosurg. 118, 1367–1377 (2013). (PMID: 2354026910.3171/2013.2.JNS121294)
Hsu, Y.-C., Lo, Y.-C., Chen, Y.-J., Wedeen, V. J. & Isaac Tseng, W.-Y. NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum. Brain Mapp. 36, 3528–3541 (2015). (PMID: 26095830686960210.1002/hbm.22860)
Baker, C. M. et al. A connectomic atlas of the human cerebrum-chapter 1: Introduction, methods, and significance. Oper. Neurosurg. (Hagerstown) 15, S1–S9 (2018). (PMID: 10.1093/ons/opy253)
Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C. & Tseng, W.-Y.I. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8, e80713 (2013). (PMID: 24348913385818310.1371/journal.pone.0080713)
Chen, D. Q. et al. Merged group tractography evaluation with selective automated group integrated tractography. Front. Neuroanat. 10, 96 (2016). (PMID: 277900955061742)
Ruff, I. M. et al. Assessment of the language laterality index in patients with brain tumor using functional MR imaging: Effects of thresholding, task selection, and prior surgery. Am. J. Neuroradiol. 29, 528–535 (2008). (PMID: 1818484910.3174/ajnr.A0841)
Grant Information:
U54 MH091657 United States MH NIMH NIH HHS
Entry Date(s):
Date Created: 20200924 Date Completed: 20201228 Latest Revision: 20210923
Update Code:
20240105
PubMed Central ID:
PMC7511306
DOI:
10.1038/s41598-020-72471-z
PMID:
32968114
Czasopismo naukowe
The intraparietal sulcus (IPS) in the posterior parietal cortex (PPC) is well-known as an interface for sensorimotor integration in visually guided actions. However, our understanding of the human neural network between the IPS and the cortical visual areas has been devoid of anatomical specificity. We here identified a distinctive association fiber tract "IPS-FG" to connect the IPS areas and the fusiform gyrus (FG), a high-level visual region, by white matter dissection and tractography. The major fiber bundles of this tract appeared to arise from the medial bank of IPS, in the superior parietal lobule (SPL), and project to the FG on the ventral temporal cortex (VTC) in post-mortem brains. This tract courses vertically at the temporo-parieto-occipital (TPO) junction where several fiber tracts intersect to connect the dorsal-to-ventral cortical regions, including the vertical occipital fasciculus (VOF). We then analyzed the structural connectivity of this tract with diffusion-MRI (magnetic resonance imaging) tractography. The quantitative tractography analysis revealed the major streamlines of IPS-FG interconnect the posterior IPS areas (e.g., IP1, IPS1) with FG (e.g., TF, FFC, VVC, PHA2, PIT) on the Human Connectome Project multimodal parcellation atlas (HCP MMP 1.0). Since the fronto-parietal network, including the posterior IPS areas, is recruited by multiple cognitive demands, the IPS-FG could play a role in the visuomotor integration as well as the top-down modulation of various cognitive functions reciprocally.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies