Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Initiation of a conserved trophectoderm program in human, cow and mouse embryos.

Tytuł:
Initiation of a conserved trophectoderm program in human, cow and mouse embryos.
Autorzy:
Gerri C; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK.
McCarthy A; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK.
Alanis-Lobato G; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK.
Demtschenko A; Department of Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
Bruneau A; Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.
Loubersac S; Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.; Service de Biologie de la Reproduction, CHU Nantes, Université de Nantes, Nantes, France.
Fogarty NME; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK.; Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK.
Hampshire D; Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
Elder K; Bourn Hall Clinic, Cambridge, UK.
Snell P; Bourn Hall Clinic, Cambridge, UK.
Christie L; Bourn Hall Clinic, Cambridge, UK.
David L; Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France.
Van de Velde H; Department of Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.; Center for Reproductive Medicine, UZ-Brussel, Brussels, Belgium.
Fouladi-Nashta AA; Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
Niakan KK; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK. .; The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. .
Źródło:
Nature [Nature] 2020 Nov; Vol. 587 (7834), pp. 443-447. Date of Electronic Publication: 2020 Sep 23.
Typ publikacji:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Biological Evolution*
Gene Expression Regulation, Developmental*
Transcription, Genetic*
Ectoderm/*metabolism
Embryo, Mammalian/*cytology
Embryo, Mammalian/*metabolism
Trophoblasts/*metabolism
Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Blastocyst Inner Cell Mass/cytology ; Blastocyst Inner Cell Mass/metabolism ; Cattle ; Cell Lineage ; Cell Polarity ; Ectoderm/cytology ; Embryo, Mammalian/enzymology ; Female ; GATA3 Transcription Factor/metabolism ; Hippo Signaling Pathway ; Humans ; Mice ; Morula/cytology ; Morula/enzymology ; Morula/metabolism ; Placenta/cytology ; Placenta/metabolism ; Pregnancy ; Protein Kinase C/metabolism ; Protein Serine-Threonine Kinases/metabolism ; SOXB1 Transcription Factors/metabolism ; Signal Transduction ; Transcription Factors/metabolism ; Trophoblasts/cytology ; YAP-Signaling Proteins ; Yolk Sac/cytology ; Yolk Sac/metabolism
References:
Cockburn, K. & Rossant, J. Making the blastocyst: lessons from the mouse. J. Clin. Invest. 120, 995–1003 (2010). (PMID: 20364097284605610.1172/JCI41229)
Niakan, K. K. & Eggan, K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64 (2013). (PMID: 2326193010.1016/j.ydbio.2012.12.008)
Fogarty, N. M. E. et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73 (2017). (PMID: 28953884581549710.1038/nature24033)
Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165 (2015). (PMID: 26293300458217610.1242/dev.131235)
Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016). (PMID: 27062923486882110.1016/j.cell.2016.03.023)
Berg, D. K. et al. Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–255 (2011). (PMID: 2131659110.1016/j.devcel.2011.01.003)
Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013). (PMID: 2393414910.1038/nsmb.2660)
Liu, L. et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat. Commun. 10, 364 (2019). (PMID: 30664750634107610.1038/s41467-018-08244-0)
Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017). (PMID: 28459457570307010.1038/ng.3844)
Madissoon, E. et al. Characterization and target genes of nine human PRD-like homeobox domain genes expressed exclusively in early embryos. Sci. Rep. 6, 28995 (2016). (PMID: 27412763494413610.1038/srep28995)
Ralston, A. et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137, 395–403 (2010). (PMID: 2008118810.1242/dev.038828)
Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283 (2008). (PMID: 1808301410.1016/j.mod.2007.11.002)
Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009). (PMID: 1928908510.1016/j.devcel.2009.02.003)
Hirate, Y., Cockburn, K., Rossant, J. & Sasaki, H. Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc. Natl Acad. Sci. USA 109, E3389–E3390 (2012). (PMID: 2316967210.1073/pnas.12118101093528498)
Kilens, S. et al. Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nat. Commun. 9, 360 (2018). (PMID: 29367672578394910.1038/s41467-017-02107-w)
Lin, K. C., Park, H. W. & Guan, K.-L. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem. Sci. 42, 862–872 (2017). (PMID: 28964625573585610.1016/j.tibs.2017.09.003)
Soncin, F. et al. Comparative analysis of mouse and human placentae across gestation reveals species-specific regulators of placental development. Development 145, dev156273 (2018). (PMID: 29361559582584710.1242/dev.156273)
Cauffman, G., De Rycke, M., Sermon, K., Liebaers, I. & Van de Velde, H. Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum. Reprod. 24, 63–70 (2009). (PMID: 1882447110.1093/humrep/den351)
Walentin, K. et al. A Grhl2-dependent gene network controls trophoblast branching morphogenesis. Development 142, 1125–1136 (2015). (PMID: 25758223651783310.1242/dev.113829)
Fang, F. et al. A distinct isoform of ZNF207 controls self-renewal and pluripotency of human embryonic stem cells. Nat. Commun. 9, 4384 (2018). (PMID: 30349051619728010.1038/s41467-018-06908-5)
Guo, G. et al. Epigenetic resetting of human pluripotency. Development 144, 2748–2763 (2017). (PMID: 28765214556004110.1242/dev.146811)
Wicklow, E. et al. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet. 10, e1004618 (2014). (PMID: 25340657420761010.1371/journal.pgen.1004618)
Hirate, Y. et al. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23, 1181–1194 (2013). (PMID: 23791731374236910.1016/j.cub.2013.05.014)
Vinot, S. et al. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282, 307–319 (2005). (PMID: 1595060010.1016/j.ydbio.2005.03.001)
Hirate, Y. et al. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev. Growth Differ. 57, 544–556 (2015). (PMID: 2645079710.1111/dgd.12235)
Kjær, S. et al. Adenosine-binding motif mimicry and cellular effects of a thieno[2,3-d]pyrimidine-based chemical inhibitor of atypical protein kinase C isoenzymes. Biochem. J. 451, 329–342 (2013). (PMID: 2341885410.1042/BJ20121871)
Rodriguez, J. et al. aPKC cycles between functionally distinct PAR protein assemblies to drive cell polarity. Dev. Cell 42, 400–415.e9 (2017). (PMID: 28781174556307210.1016/j.devcel.2017.07.007)
Aguilar-Aragon, M. et al. Pak1 kinase maintains apical membrane identity in epithelia. Cell Rep. 22, 1639–1646 (2018). (PMID: 29444419584718410.1016/j.celrep.2018.01.060)
Plusa, B. et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515 (2005). (PMID: 1565707310.1242/jcs.01666)
Korotkevich, E. et al. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247.e7 (2017). (PMID: 28171747530005310.1016/j.devcel.2017.01.006)
Frum, T., Murphy, T. M. & Ralston, A. HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 7, e42298 (2018). (PMID: 30526858628957110.7554/eLife.42298)
Clift, D. et al. A method for the acute and rapid degradation of endogenous proteins. Cell 171, 1692–1706 (2017). (PMID: 29153837573339310.1016/j.cell.2017.10.033)
Israel, S., Casser, E., Drexler, H. C. A., Fuellen, G. & Boiani, M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 20, 755 (2019). (PMID: 31638890680560710.1186/s12864-019-6106-2)
Chi, F., Sharpley, M. S., Nagaraj, R., Roy, S. S. & Banerjee, U. Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev. Cell 53, 9–26.e4 (2020). (PMID: 3219706810.1016/j.devcel.2020.02.0157289320)
Alarcon, V. B. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol. Reprod. 83, 347–358 (2010). (PMID: 20505164292480110.1095/biolreprod.110.084400)
De Paepe, C. et al. Human trophectoderm cells are not yet committed. Hum. Reprod. 28, 740–749 (2013). (PMID: 2325739410.1093/humrep/des432)
Kimmelman, J. et al. New ISSCR guidelines: clinical translation of stem cell research. Lancet 387, 1979–1981 (2016). (PMID: 2717975210.1016/S0140-6736(16)30390-7)
Meistermann, D. et al. Spatio-temporal analysis of human preimplantation development reveals dynamics of epiblast and trophectoderm. Cell Stem Cell https://doi.org/10.2139/ssrn.3441907 (2019).
De Paepe, C. et al. BMP4 plays a role in apoptosis during human preimplantation development. Mol. Reprod. Dev. 86, 53–62 (2019). (PMID: 3037255810.1002/mrd.23081)
Fouladi Nashta, A. A., Waddington, D. & Campbell, K. H. S. Maintenance of bovine oocytes in meiotic arrest and subsequent development in vitro: a comparative evaluation of antral follicle culture with other methods. Biol. Reprod. 59, 255–262 (1998). (PMID: 968729310.1095/biolreprod59.2.255)
Holm, P., Booth, P. J., Schmidt, M. H., Greve, T. & Callesen, H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700 (1999). (PMID: 1073436610.1016/S0093-691X(99)00162-4)
Fouladi-Nashta, A. A. et al. Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod. Biomed. Online 10, 497–502 (2005). (PMID: 1590145810.1016/S1472-6483(10)60827-9)
Thouas, G. A., Korfiatis, N. A., French, A. J., Jones, G. M. & Trounson, A. O. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3, 25–29 (2001). (PMID: 1251388810.1016/S1472-6483(10)61960-8)
Goissis, M. D. & Cibelli, J. B. Functional characterization of CDX2 during bovine preimplantation development in vitro. Mol. Reprod. Dev. 81, 962–970 (2014). (PMID: 2525105110.1002/mrd.22415)
Koo, D.-B. et al. Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492 (2002). (PMID: 1213588610.1095/biolreprod67.2.487)
Zhu, M., Leung, C. Y., Shahbazi, M. N. & Zernicka-Goetz, M. Actomyosin polarisation through PLC–PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8, 921 (2017). (PMID: 29030553564062910.1038/s41467-017-00977-8)
Maître, J.-L., Niwayama, R., Turlier, H., Nédélec, F. & Hiiragi, T. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17, 849–855 (2015). (PMID: 2607535710.1038/ncb3185)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 10.1093/bioinformatics/btt65624227677)
Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016). (PMID: 27424783506552510.1016/j.stem.2016.06.011)
Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics 19, 220 (2018). (PMID: 29884114599407910.1186/s12859-018-2226-y)
El Amrani, K., Alanis-Lobato, G., Mah, N., Kurtz, A. & Andrade-Navarro, M. A. Detection of condition-specific marker genes from RNA-seq data with MGFR. PeerJ 7, e6970 (2019). (PMID: 31179178654234910.7717/peerj.6970)
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013). (PMID: 23586463363706410.1186/1471-2105-14-128)
Serra, D. et al. Self-organization and symmetry breaking in intestinal organoid development. Nature 569, 66–72 (2019). (PMID: 31019299654454110.1038/s41586-019-1146-y)
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020). (PMID: 3205503110.1038/s41587-020-0439-x)
Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019). (PMID: 30808370639178910.1186/s13059-019-1642-2)
Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020). (PMID: 3170114810.1093/nar/gkaa516)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352)
Pongor, L. S. et al. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks. Epigenetics Chromatin 13, 21 (2020). (PMID: 32321568717550510.1186/s13072-020-00343-x)
Grant Information:
United Kingdom Wellcome Trust; FC001120 United Kingdom CRUK_ Cancer Research UK; FC001120 United Kingdom MRC_ Medical Research Council; FC001120 United Kingdom WT_ Wellcome Trust
Substance Nomenclature:
0 (Adaptor Proteins, Signal Transducing)
0 (GATA3 Transcription Factor)
0 (SOXB1 Transcription Factors)
0 (Transcription Factors)
0 (YAP-Signaling Proteins)
0 (YAP1 protein, human)
EC 2.7.11.1 (Protein Serine-Threonine Kinases)
EC 2.7.11.13 (Protein Kinase C)
Entry Date(s):
Date Created: 20200924 Date Completed: 20210125 Latest Revision: 20220422
Update Code:
20240105
PubMed Central ID:
PMC7116563
DOI:
10.1038/s41586-020-2759-x
PMID:
32968278
Czasopismo naukowe
Current understandings of cell specification in early mammalian pre-implantation development are based mainly on mouse studies. The first lineage differentiation event occurs at the morula stage, with outer cells initiating a trophectoderm (TE) placental progenitor program. The inner cell mass arises from inner cells during subsequent developmental stages and comprises precursor cells of the embryo proper and yolk sac 1 . Recent gene-expression analyses suggest that the mechanisms that regulate early lineage specification in the mouse may differ in other mammals, including human 2-5 and cow 6 . Here we show the evolutionary conservation of a molecular cascade that initiates TE segregation in human, cow and mouse embryos. At the morula stage, outer cells acquire an apical-basal cell polarity, with expression of atypical protein kinase C (aPKC) at the contact-free domain, nuclear expression of Hippo signalling pathway effectors and restricted expression of TE-associated factors such as GATA3, which suggests initiation of a TE program. Furthermore, we demonstrate that inhibition of aPKC by small-molecule pharmacological modulation or Trim-Away protein depletion impairs TE initiation at the morula stage. Our comparative embryology analysis provides insights into early lineage specification and suggests that a similar mechanism initiates a TE program in human, cow and mouse embryos.
Comment in: Nature. 2020 Nov;587(7834):370-371. (PMID: 33067590)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies