Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus .

Tytuł:
Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus .
Autorzy:
Yang K; School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Geng Q; School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
Song F; School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
He X; School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
Hu T; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Wang S; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Tian J; School of Life Science, Jiangsu Normal University, Xuzhou 221116, China.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2020 Sep 23; Vol. 21 (19). Date of Electronic Publication: 2020 Sep 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
Aflatoxins*/biosynthesis
Aflatoxins*/genetics
Gene Expression Regulation, Fungal*
RNA-Seq*
Spores, Fungal*/genetics
Spores, Fungal*/metabolism
Transcriptome*
Aspergillus flavus/*physiology
Glycine max/microbiology
References:
Toxins (Basel). 2016 Jan 20;8(1):. (PMID: 26805883)
Toxins (Basel). 2018 May 24;10(6):. (PMID: 29794965)
Biochem Biophys Res Commun. 1999 Oct 5;263(3):646-51. (PMID: 10512732)
Int J Food Microbiol. 2017 Sep 1;256:1-10. (PMID: 28578264)
Microb Pathog. 2020 Oct;147:104280. (PMID: 32505654)
Appl Microbiol Biotechnol. 2018 Aug;102(15):6659-6672. (PMID: 29860589)
Mol Microbiol. 2010 Jan;75(2):294-307. (PMID: 19889092)
Toxins (Basel). 2020 Jan 01;12(1):. (PMID: 31906282)
Toxins (Basel). 2019 Nov 01;11(11):. (PMID: 31683906)
Nat Methods. 2015 Apr;12(4):357-60. (PMID: 25751142)
Eukaryot Cell. 2012 Sep;11(9):1104-11. (PMID: 22798394)
Sci Rep. 2016 May 16;6:25930. (PMID: 27180614)
Front Microbiol. 2018 Aug 07;9:1568. (PMID: 30131770)
BMC Microbiol. 2013 Apr 26;13:91. (PMID: 23617571)
Int J Mol Sci. 2020 Feb 23;21(4):. (PMID: 32102190)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
mBio. 2020 Jul 14;11(4):. (PMID: 32665272)
G3 (Bethesda). 2016 Oct 13;6(10):3269-3281. (PMID: 27534569)
J Food Prot. 1992 Nov;55(11):888-892. (PMID: 31084068)
Food Microbiol. 2017 Sep;66:1-10. (PMID: 28576356)
Int J Food Microbiol. 2005 Nov 25;105(2):111-7. (PMID: 16061299)
Virulence. 2018;9(1):1273-1286. (PMID: 30027796)
Antimicrob Agents Chemother. 2016 Dec 27;61(1):. (PMID: 27821453)
Toxins (Basel). 2020 Jan 19;12(1):. (PMID: 31963878)
Toxins (Basel). 2019 Feb 01;11(2):. (PMID: 30717146)
J Agric Food Chem. 2019 Apr 17;67(15):4200-4213. (PMID: 30916945)
mBio. 2018 Aug 21;9(4):. (PMID: 30131357)
Sci Rep. 2018 Nov 15;8(1):16871. (PMID: 30442975)
J Agric Food Chem. 2016 Oct 5;64(39):7404-7413. (PMID: 27622540)
Toxins (Basel). 2018 Aug 14;10(8):. (PMID: 30110983)
BMC Microbiol. 2012 Jun 13;12:106. (PMID: 22694821)
Toxins (Basel). 2017 Mar 01;9(3):. (PMID: 28257049)
Annu Rev Phytopathol. 2011;49:107-33. (PMID: 21513456)
BMC Bioinformatics. 2008 Dec 29;9:559. (PMID: 19114008)
Front Microbiol. 2018 May 23;9:1049. (PMID: 29875755)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
mSphere. 2018 Mar 14;3(2):. (PMID: 29564395)
Int J Food Microbiol. 2006 May 25;109(1-2):121-6. (PMID: 16504326)
Front Microbiol. 2019 Dec 18;10:2895. (PMID: 31921070)
Grant Information:
31900036, 31972171, 31671944 National Natural Science Foundation of China; BK20190994 Natural Science Foundation of Jiangsu Province; 19KJB180016 Program of Natural Science Foundation of the Jiangsu Higher Education Institutions of China; 18XLRX029 the Program of Natural Science Foundation of Jiangsu Normal University
Contributed Indexing:
Keywords: Aspergillus flavus; RNA-seq; aflatoxin; conidiation; transcriptome
Substance Nomenclature:
0 (Aflatoxins)
Entry Date(s):
Date Created: 20200926 Date Completed: 20210223 Latest Revision: 20231213
Update Code:
20240105
PubMed Central ID:
PMC7583960
DOI:
10.3390/ijms21196994
PMID:
32977505
Czasopismo naukowe
Aflatoxins (AFs) have always been regarded as the most effective carcinogens, posing a great threat to agriculture, food safety, and human health. Aspergillus flavus is the major producer of aflatoxin contamination in crops. The prevention and control of A. flavus and aflatoxin continues to be a global problem. In this study, we demonstrated that the cell-free culture filtrate of Aspergillus oryzae and a non-aflatoxigenic A. flavus can effectively inhibit the production of AFB1 and the growth and reproduction of A. flavus , indicating that both of the non-aflatoxigenic Aspergillus strains secrete inhibitory compounds. Further transcriptome sequencing was performed to analyze the inhibitory mechanism of A. flavus treated with fermenting cultures, and the results revealed that genes involved in the AF biosynthesis pathway and other biosynthetic gene clusters were significantly downregulated, which might be caused by the reduced expression of specific regulators, such as AflS, FarB, and MtfA. The WGCNA results further revealed that genes involved in the TCA cycle and glycolysis were potentially involved in aflatoxin biosynthesis. Our comparative transcriptomics also revealed that two conidia transcriptional factors, brlA and abaA , were found to be significantly downregulated, which might lead to the downregulation of conidiation-specific genes, such as the conidial hydrophobins genes rodA and rodB . In summary, our research provides new insights for the molecular mechanism of controlling AF synthesis to control the proliferation of A. flavus and AF pollution.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies