Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity.

Tytuł:
A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity.
Autorzy:
Huang Y; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, P. R. China.; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Yin C; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, P. R. China.; Department of Plant Pathology & Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Liu J; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Feng B; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, P. R. China.
Ge D; Department of Plant Pathology & Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Kong L; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Ortiz-Morea FA; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
Richter J; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), 18 A-1190, Muthgasse, Austria.
Hauser MT; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), 18 A-1190, Muthgasse, Austria.
Wang WM; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, P. R. China.
Shan L; Department of Plant Pathology & Microbiology, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA.
He P; Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Sep 25; Vol. 11 (1), pp. 4859. Date of Electronic Publication: 2020 Sep 25.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Autoimmunity/*genetics
Carrier Proteins/*genetics
Carrier Proteins/*metabolism
GPI-Linked Proteins/*metabolism
Plant Proteins/*genetics
Plant Proteins/*metabolism
Arabidopsis/genetics ; Arabidopsis/metabolism ; Arabidopsis Proteins/genetics ; Arabidopsis Proteins/metabolism ; Autoimmunity/physiology ; Carrier Proteins/immunology ; Catharanthus/genetics ; Catharanthus/metabolism ; Cell Death/genetics ; GPI-Linked Proteins/genetics ; Gene Expression Regulation, Plant ; Glycosylphosphatidylinositols ; MAP Kinase Kinase Kinases/genetics ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Phosphorylation ; Plant Proteins/immunology ; Plants, Genetically Modified ; RNA Interference ; Transcriptome
References:
Couto, D. & Zipfel, C. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537–552 (2016). (PMID: 2747712710.1038/nri.2016.77)
Yu, X., Feng, B., He, P. & Shan, L. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55, 109–137 (2017). (PMID: 28525309624091310.1146/annurev-phyto-080516-035649)
Gust, A. A., Pruitt, R. & Nurnberger, T. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22, 779–791 (2017). (PMID: 2877990010.1016/j.tplants.2017.07.005)
Jamieson, P. A., Shan, L. B. & He, P. Plant cell surface molecular cypher: receptor-like proteins and their roles in immunity and development. Plant Sci. 274, 242–251 (2018). (PMID: 30080610629711510.1016/j.plantsci.2018.05.030)
Bohm, H., Albert, I., Fan, L., Reinhard, A. & Nurnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20, 47–54 (2014). (PMID: 2483520410.1016/j.pbi.2014.04.007)
Cui, H., Tsuda, K. & Parker, J. E. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487–511 (2015). (PMID: 2549446110.1146/annurev-arplant-050213-040012)
Elmore, J. M., Lin, Z. J. & Coaker, G. Plant NB-LRR signaling: upstreams and downstreams. Curr. Opin. Plant Biol. 14, 365–371 (2011). (PMID: 21459033315562110.1016/j.pbi.2011.03.011)
DeYoung, B. J. & Innes, R. W. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7, 1243–1249 (2006). (PMID: 17110940197315310.1038/ni1410)
Shiu, S. H. & Bleecker, A. B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543 (2003). (PMID: 1280558510.1104/pp.103.021964)
Belkhadir, Y., Yang, L., Hetzel, J., Dangl, J. L. & Chory, J. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem. Sci. 39, 447–456 (2014). (PMID: 25089011417794010.1016/j.tibs.2014.06.006)
Hohmann, U., Lau, K. & Hothorn, M. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68, 109–137 (2017). (PMID: 2812528010.1146/annurev-arplant-042916-040957)
Nissen, K. S., Willats, W. G. & Malinovsky, F. G. Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci. 21, 516–527 (2016). (PMID: 2677877510.1016/j.tplants.2015.12.004)
Li, C., Wu, H. M. & Cheung, A. Y. FERONIA and her pals: functions and mechanisms. Plant Physiol. 171, 2379–2392 (2016). (PMID: 273423084972288)
Lindner, H., Muller, L. M., Boisson-Dernier, A. & Grossniklaus, U. CrRLK1L receptor-like kinases: not just another brick in the wall. Curr. Opin. Plant Biol. 15, 659–669 (2012). (PMID: 2288452110.1016/j.pbi.2012.07.003)
Franck, C. M., Westermann, J. & Boisson-Dernier, A. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu. Rev. Plant Biol. 69, 301–328 (2018). (PMID: 2953927110.1146/annurev-arplant-042817-040557)
Escobar-Restrepo, J. M. et al. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317, 656–660 (2007). (PMID: 1767366010.1126/science.1143562)
Duan, Q., Kita, D., Li, C., Cheung, A. Y. & Wu, H. M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc. Natl Acad. Sci. USA 107, 17821–17826 (2010). (PMID: 2087610010.1073/pnas.1005366107)
Chen, J. et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc. Natl Acad. Sci. USA 113, E5519–E5527 (2016). (PMID: 2756640410.1073/pnas.1608449113)
Boisson-Dernier, A. et al. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136, 3279–3288 (2009). (PMID: 19736323273914410.1242/dev.040071)
Miyazaki, S. et al. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19, 1327–1331 (2009). (PMID: 1964687610.1016/j.cub.2009.06.064)
Boisson-Dernier, A. et al. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol. 11, e1001719 (2013). (PMID: 24302886384110410.1371/journal.pbio.1001719)
Ge, Z. et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358, 1596–1600 (2017). (PMID: 29242234596461010.1126/science.aao3642)
Zhu, L. et al. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J. 95, 474–486 (2018). (PMID: 2976352010.1111/tpj.13963)
Stegmann, M. et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287–28 (2017). (PMID: 2810489010.1126/science.aal2541)
Mang, H. et al. Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases. Plant Cell 29, 3140–3156 (2017). (PMID: 29150546575727310.1105/tpc.17.00464)
Guo, H. et al. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr. Biol. 28, 3316–3324.e3316 (2018). (PMID: 3027018110.1016/j.cub.2018.07.078)
Kessler, S. A. et al. Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968–971 (2010). (PMID: 2107166910.1126/science.1195211)
Li, C. et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4, e06587 (2015).
Xiao, Y. et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572, 270–274 (2019). (PMID: 3129164210.1038/s41586-019-1409-7)
Ge, Z. et al. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity. Curr. Biol. 29, 3256–3265.e5 (2019).
Feng, H. et al. LORELEI-LIKE GPI-ANCHORED PROTEINS 2/3 regulate pollen tube growth as chaperones and coreceptors for ANXUR/BUPS receptor kinases in Arabidopsis. Mol. Plant 12, 1612–1623 (2019). (PMID: 3154173910.1016/j.molp.2019.09.004)
Shen, Q., Bourdais, G., Pan, H., Robatzek, S. & Tang, D. Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity. Proc. Natl Acad. Sci. USA 114, 5749–5754 (2017). (PMID: 2850713710.1073/pnas.1614468114)
Rodriguez, M. C., Petersen, M. & Mundy, J. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621–649 (2010). (PMID: 2044152910.1146/annurev-arplant-042809-112252)
Meng, X. & Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013). (PMID: 2366300210.1146/annurev-phyto-082712-102314)
Tena, G., Boudsocq, M. & Sheen, J. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519–529 (2011). (PMID: 21704551319124210.1016/j.pbi.2011.05.006)
Zhang, M., Su, J., Zhang, Y., Xu, J. & Zhang, S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr. Opin. Plant Biol. 45, 1–10 (2018). (PMID: 2975326610.1016/j.pbi.2018.04.012)
Sun, T. et al. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Rep. 19, e45324 (2018). (PMID: 29789386603070310.15252/embr.201745324)
Bi, G. et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30, 1543–1561 (2018). (PMID: 29871986609659010.1105/tpc.17.00981)
Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002). (PMID: 1187555510.1038/415977a)
Ichimura, K., Casais, C., Peck, S. C., Shinozaki, K. & Shirasu, K. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J. Biol. Chem. 281, 36969–36976 (2006). (PMID: 1702343310.1074/jbc.M605319200)
Suarez-Rodriguez, M. C. et al. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 143, 661–669 (2007). (PMID: 17142480180374510.1104/pp.106.091389)
Nakagami, H., Soukupova, H., Schikora, A., Zarsky, V. & Hirt, H. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 281, 38697–38704 (2006). (PMID: 1704335610.1074/jbc.M605293200)
Petersen, M. et al. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120 (2000). (PMID: 1116318610.1016/S0092-8674(00)00213-0)
Gao, M. et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res.18, 1190–1198 (2008). (PMID: 1898202010.1038/cr.2008.300)
Zhang, Z. et al. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11, 253–263 (2012). (PMID: 2242396510.1016/j.chom.2012.01.015)
Kong, Q. et al. The MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24, 2225–2236 (2012). (PMID: 22643122344259810.1105/tpc.112.097253)
Su, S. H. et al. Deletion of a tandem gene family in Arabidopsis: increased MEKK2 abundance triggers autoimmunity when the MEKK1-MKK1/2-MPK4 signaling cascade is disrupted. Plant Cell 25, 1895–1910 (2013). (PMID: 23695980369471310.1105/tpc.113.112102)
Zhang, Z. et al. The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3. EMBO Rep. 18, 292–302 (2017). (PMID: 2798679110.15252/embr.201642704)
Liu, J. et al. The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nat. Plants https://doi.org/10.1038/s41477-020-0748-6 (2020).
Richter, J. et al. Multiplex mutagenesis of four clustered CrRLK1L with CRISPR/Cas9 exposes their growth regulatory roles in response to metal ions. Sci. Rep. 8, 12182 (2018). (PMID: 30111865609386810.1038/s41598-018-30711-3)
de Oliveira, M. V. V. et al. Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nat. Plants 2, 15218 (2016). (PMID: 27250875557275710.1038/nplants.2015.218)
Yang, Y. et al. RNAi-based screen reveals concerted functions of MEKK2 and CRCK3 in plant cell death regulation. Plant Physiol. https://doi.org/10.1104/pp.1119.01555 (2020).
Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870 (2019).
Tsukamoto, T., Qin, Y., Huang, Y., Dunatunga, D. & Palanivelu, R. A role for LORELEI, a putative glycosylphosphatidylinositol-anchored protein, in Arabidopsis thaliana double fertilization and early seed development. Plant J. 62, 571–588 (2010). (PMID: 2016355410.1111/j.1365-313X.2010.04177.x)
Gonneau, M. et al. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol. 28, 2452–245 (2018). (PMID: 3005730110.1016/j.cub.2018.05.075)
Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014). (PMID: 24458638467272610.1126/science.1244454)
Guo, H. et al. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 106, 7648–7653 (2009). (PMID: 1938378510.1073/pnas.0812346106)
He, P., Shan, L. & Sheen, J. Plant-Pathogen Interactions. 1–9 (Springer, 2007).
Bucherl, C., Aker, J., de Vries, S. & Borst, J. W. Probing protein-protein Interactions with FRET-FLIM. Methods Mol. Biol. 655, 389–399 (2010). (PMID: 2073427510.1007/978-1-60761-765-5_26)
Grant Information:
R01 GM092893 United States GM NIGMS NIH HHS; R01 GM097247 United States GM NIGMS NIH HHS
Substance Nomenclature:
0 (Arabidopsis Proteins)
0 (Carrier Proteins)
0 (GPI-Linked Proteins)
0 (Glycosylphosphatidylinositols)
0 (LLG1 protein, Arabidopsis)
0 (Plant Proteins)
0 (SUMM2 protein, Arabidopsis)
EC 2.7.11.25 (MAP Kinase Kinase Kinases)
EC 2.7.11.25 (MEKK1 protein, Arabidopsis)
EC 2.7.12.2 (MKK2 protein, Arabidopsis)
EC 2.7.12.2 (Mitogen-Activated Protein Kinase Kinases)
Entry Date(s):
Date Created: 20200926 Date Completed: 20201014 Latest Revision: 20210925
Update Code:
20240105
PubMed Central ID:
PMC7519094
DOI:
10.1038/s41467-020-18600-8
PMID:
32978401
Czasopismo naukowe
Cell death is intrinsically linked with immunity. Disruption of an immune-activated MAPK cascade, consisting of MEKK1, MKK1/2, and MPK4, triggers cell death and autoimmunity through the nucleotide-binding leucine-rich repeat (NLR) protein SUMM2 and the MAPK kinase kinase MEKK2. In this study, we identify a Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), named LETUM2/MEDOS1 (LET2/MDS1), and the glycosylphosphatidylinositol (GPI)-anchored protein LLG1 as regulators of mekk1-mkk1/2-mpk4 cell death. LET2/MDS1 functions additively with LET1, another CrRLK1L, and acts genetically downstream of MEKK2 in regulating SUMM2 activation. LET2/MDS1 complexes with LET1 and promotes LET1 phosphorylation, revealing an intertwined regulation between different CrRLK1Ls. LLG1 interacts with the ectodomain of LET1/2 and mediates LET1/2 transport to the plasma membrane, corroborating its function as a co-receptor of LET1/2 in the mekk1-mkk1/2-mpk4 cell death pathway. Thus, our data suggest that a trimeric complex consisting of two CrRLK1Ls LET1, LET2/MDS1, and a GPI-anchored protein LLG1 that regulates the activation of NLR SUMM2 for initiating cell death and autoimmunity.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies