Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies.

Tytuł:
Analytical formulas representing track-structure simulations on DNA damage induced by protons and light ions at radiotherapy-relevant energies.
Autorzy:
Kundrát P; Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.; Department of Radiation Dosimetry, Nuclear Physics Institute CAS, Prague, Czech Republic.
Friedland W; Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Becker J; Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Eidemüller M; Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Ottolenghi A; Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy.
Baiocco G; Radiation Biophysics and Radiobiology Group, Physics Department, University of Pavia, Pavia, Italy. .
Źródło:
Scientific reports [Sci Rep] 2020 Sep 25; Vol. 10 (1), pp. 15775. Date of Electronic Publication: 2020 Sep 25.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
DNA Damage*
Monte Carlo Method*
Protons*
Radiotherapy*
DNA Breaks, Double-Stranded/radiation effects ; Humans ; Linear Energy Transfer
References:
Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist 8th edn. (Wolters Kluwer, Philadelphia, 2019).
Friedland, W. & Kundrát, P. Stochastic multi-scale modeling of biological effects induced by ionizing radiation. In A Guide to Outcome Modeling in Radiotherapy and Oncology: Listening to the Data (ed. El Naqa, I.) (CRC Press, Boca Raton, 2018).
McMahon, S. J. & Prise, K. M. Mechanistic modelling of radiation responses. Cancers (Basel) 11, E205. https://doi.org/10.3390/cancers11020205 (2019). (PMID: 10.3390/cancers11020205)
Nikjoo, H. et al. Radiation track, DNA damage and response—A review. Rep. Prog. Phys. 79, 116601 (2016). (PMID: 10.1088/0034-4885/79/11/116601)
Friedland, W., Jacob, P. & Kundrát, P. Stochastic simulation of DNA double-strand break repair by non-homologous end joining based on track structure calculations. Radiat. Res. 173, 677–688 (2010). (PMID: 10.1667/RR1965.1)
Friedland, W., Dingfelder, M., Kundrát, P. & Jacob, P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat. Res. 711, 28–40 (2011). (PMID: 10.1016/j.mrfmmm.2011.01.003)
Friedland, W., Jacob, P. & Kundrát, P. Mechanistic simulation of radiation damage to DNA and its repair: On the track towards systems radiation biology modelling. Radiat. Prot. Dosimetry 143, 542–548 (2011). (PMID: 10.1093/rpd/ncq383)
Friedland, W., Kundrát, P. & Jacob, P. Stochastic modelling of DSB repair after photon and ion irradiation. Int. J. Radiat. Biol. 88, 129–136 (2012). (PMID: 10.3109/09553002.2011.611404)
Friedland, W. & Kundrát, P. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation. Mutat. Res. 756, 213–223 (2013). (PMID: 10.1016/j.mrgentox.2013.06.013)
Friedland, W. & Kundrát, P. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility. Radiat. Prot. Dosimetry 166, 71–74 (2015). (PMID: 10.1093/rpd/ncv174)
Friedland, W. et al. Comprehensive track-structure based evaluation of DNA damage by light ions from radiotherapy-relevant energies down to stopping. Sci. Rep. 7, 45161. https://doi.org/10.1038/srep45161 (2017). (PMID: 10.1038/srep45161283456225366876)
Friedland, W., Kundrát, P., Schmitt, E., Becker, J. & Li, W. Modeling DNA damage by photons and light ions over energy ranges used in medical applications. Radiat. Prot. Dosimetry 183, 84–88 (2019). (PMID: 10.1093/rpd/ncy245)
Tobias, C. A. The repair-misrepair model in radiobiology: comparison to other models. Radiat. Res. 8, S77-95 (1985). (PMID: 10.2307/3576635)
Curtis, S. B. Lethal and potentially lethal lesions induced by radiation—A unified repair model. Radiat. Res. 106, 252–270 (1986) (Erratum in: Radiat. Res. 119, 584 (1989)). (PMID: 10.2307/3576798)
Scholz, M. & Kraft, G. Track structure and the calculation of biological effects of heavy charged particles. Adv. Space Res. 18, 5–14 (1996). (PMID: 10.1016/0273-1177(95)00784-C)
Sachs, R. K., Hahnfeld, P. & Brenner, D. J. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72, 351–374 (1997). (PMID: 10.1080/095530097143149)
Kundrát, P., Lokajíček, M. & Hromčíková, H. Probabilistic two-stage model of cell inactivation by ionizing particles. Phys. Med. Biol. 50, 1433–1447 (2005). (PMID: 10.1088/0031-9155/50/7/007)
Kundrát, P. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions. Phys. Med. Biol. 51, 1185–1199 (2006). (PMID: 10.1088/0031-9155/51/5/010)
Friedrich, T., Scholz, U., Elsässer, T., Durante, M. & Scholz, M. Calculation of the biological effects of ion beams based on the microscopic spatial damage distribution pattern. Int. J. Radiat. Biol. 88, 103–107 (2012). (PMID: 10.3109/09553002.2011.611213)
Friedland, W., Kundrát, P. & Jacob, P. Track structure calculations on hypothetical subcellular targets for the release of cell-killing signals in bystander experiments with medium transfer. Radiat. Prot. Dosimetry 143, 325–329 (2011). (PMID: 10.1093/rpd/ncq401)
Kundrát, P. & Friedland, W. Track structure calculations on intracellular targets responsible for signal release in bystander experiments with transfer of irradiated cell-conditioned medium. Int. J. Radiat. Biol. 88, 98–102 (2012). (PMID: 10.3109/09553002.2011.595874)
Friedland, W., Schmitt, E., Kundrát, P., Baiocco, G. & Ottolenghi, A. Track-structure simulations of energy deposition patterns to mitochondria and damage to their DNA. Int. J. Radiat. Biol. 95, 3–11 (2019). (PMID: 10.1080/09553002.2018.1450532)
Kundrát, P. & Friedland, W. Mechanistic modelling of radiation-induced bystander effects. Radiat. Prot. Dosimetry 166, 148–151 (2015). (PMID: 10.1093/rpd/ncv170)
Kundrát, P. & Friedland, W. Non-linear response of cells to signals leads to revised characteristics of bystander effects inferred from their modelling. Int. J. Radiat. Biol. 88, 743–750 (2012). (PMID: 10.3109/09553002.2012.698029)
Kundrát, P., Bauer, G., Jacob, P. & Friedland, W. Mechanistic modelling suggests that the size of preneoplastic lesions is limited by intercellular induction of apoptosis in oncogenically transformed cells. Carcinogenesis 33, 253–259 (2012). (PMID: 10.1093/carcin/bgr227)
Kundrát, P. & Friedland, W. Impact of intercellular induction of apoptosis on low-dose radiation carcinogenesis. Radiat. Prot. Dosimetry 166, 170–173 (2015). (PMID: 10.1093/rpd/ncv169)
Kundrát, P. & Friedland, W. Enhanced release of primary signals may render intercellular signalling ineffective due to spatial aspects. Sci. Rep. 6, 33214. https://doi.org/10.1038/srep33214 (2016). (PMID: 10.1038/srep33214276457995028836)
Bernal, M. A. et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Med. 31, 861–874 (2015). (PMID: 10.1016/j.ejmp.2015.10.087)
Siragusa, M. et al. The COOLER code: A novel analytical approach to calculate subcellular energy deposition by internal electron emitters. Radiat. Res. 188, 204–220 (2017). (PMID: 10.1667/RR14683.1)
Meylan, S. et al. Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA. Sci. Rep. 7, 11923. https://doi.org/10.1038/s41598-017-11851-4 (2017). (PMID: 10.1038/s41598-017-11851-4289318515607336)
Okada, S., Murakami, K., Incerti, S., Amako, K. & Sasaki, T. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Med. Phys. 46, 1483–1500 (2019). (PMID: 10.1002/mp.13370)
Semenenko, V. A. & Stewart, R. D. Fast Monte Carlo simulation of DNA damage formed by electrons and light ions. Phys. Med. Biol. 51, 1693–1706 (2006). (PMID: 10.1088/0031-9155/51/7/004)
Baiocco, G. et al. The origin of neutron biological effectiveness as a function of energy. Sci. Rep. 6, 34033. https://doi.org/10.1038/srep34033 (2016). (PMID: 10.1038/srep34033276543495032018)
Baiocco, G. et al. At the physics-biology interface: The neutron affair. Radiat. Prot. Dosimetry 180, 278–281 (2018). (PMID: 10.1093/rpd/ncx222)
Barbieri, S. et al. Predicting DNA damage foci and their experimental readout with 2D microscopy: A unified approach applied to photon and neutron exposures. Sci. Rep. 9, 14019. https://doi.org/10.1038/s41598-019-50408-5 (2019). (PMID: 10.1038/s41598-019-50408-5315707416769049)
Schuemann, J. et al. A new standard DNA damage (SDD) data format. Radiat. Res. 191, 76–92 (2019). (PMID: 10.1667/RR15209.1)
Schmitt, E., Friedland, W., Kundrát, P., Dingfelder, M. & Ottolenghi, A. Cross-section scaling for track structure simulations of low-energy ions in liquid water. Radiat. Prot. Dosimetry 166, 15–18 (2015). (PMID: 10.1093/rpd/ncv302)
Kreipl, M. S., Friedland, W. & Paretzke, H. G. Interaction of ion tracks in spatial and temporal proximity. Radiat. Environ. Biophys. 48, 349–359 (2009). (PMID: 10.1007/s00411-009-0234-z)
Friedrich, T., Scholz, U., Elsässer, T., Durante, M. & Scholz, M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J. Radiat. Res. 54, 494–514 (2013). (PMID: 10.1093/jrr/rrs114)
Surdutovich, E. & Solov’yov, A. V. Multiscale modeling for cancer radiotherapies. Cancer Nano. 10, 6 (2019). (PMID: 10.1186/s12645-019-0051-2)
Mairani, A. et al. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy. Phys. Med. Biol. 55, 4273–4289 (2010). (PMID: 10.1088/0031-9155/55/15/006)
Stewart, R. D. et al. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions. Phys. Med. Biol. 60, 8249–8274 (2015). (PMID: 10.1088/0031-9155/60/21/8249)
Verkhovtsev, A., Surdutovich, E. & Solov’yov, A. V. Phenomenon-based evaluation of relative biological effectiveness of ion beams by means of the multiscale approach. Cancer Nano. 10, 4 (2019). (PMID: 10.1186/s12645-019-0049-9)
Friedland, W. et al. Simulation of light ion induced DNA damage patterns. Radiat. Prot. Dosimetry 122, 116–120 (2006). (PMID: 10.1093/rpd/ncl451)
Kundrát, P. & Stewart, R. D. On the biophysical interpretation of lethal DNA lesions induced by ionising radiation. Radiat. Prot. Dosimetry 122, 169–172 (2006). (PMID: 10.1093/rpd/ncl439)
Substance Nomenclature:
0 (Protons)
Entry Date(s):
Date Created: 20200926 Date Completed: 20201222 Latest Revision: 20210925
Update Code:
20240105
PubMed Central ID:
PMC7519066
DOI:
10.1038/s41598-020-72857-z
PMID:
32978459
Czasopismo naukowe
Track structure based simulations valuably complement experimental research on biological effects of ionizing radiation. They provide information at the highest level of detail on initial DNA damage induced by diverse types of radiation. Simulations with the biophysical Monte Carlo code PARTRAC have been used for testing working hypotheses on radiation action mechanisms, for benchmarking other damage codes and as input for modelling subsequent biological processes. To facilitate such applications and in particular to enable extending the simulations to mixed radiation field conditions, we present analytical formulas that capture PARTRAC simulation results on DNA single- and double-strand breaks and their clusters induced in cells irradiated by ions ranging from hydrogen to neon at energies from 0.5 GeV/u down to their stopping. These functions offer a means by which radiation transport codes at the macroscopic scale could easily be extended to predict biological effects, exploiting a large database of results from micro-/nanoscale simulations, without having to deal with the coupling of spatial scales and running full track-structure calculations.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies