Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fluorinated Polymers via Para-Fluoro-Thiol and Thiol-Bromo Click Step Growth Polymerization.

Tytuł:
Fluorinated Polymers via Para-Fluoro-Thiol and Thiol-Bromo Click Step Growth Polymerization.
Autorzy:
Zhao T; University of Warwick, Coventry, CV4 7AL, UK.
Beyer VP; University of Warwick, Coventry, CV4 7AL, UK.; School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
Becer CR; University of Warwick, Coventry, CV4 7AL, UK.
Źródło:
Macromolecular rapid communications [Macromol Rapid Commun] 2020 Nov; Vol. 41 (22), pp. e2000409. Date of Electronic Publication: 2020 Sep 28.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2002- : Weinheim, Germany : Wiley-VCH
Original Publication: Basel ; Oxford, CT : Hüthig & Wepf, c1994-
MeSH Terms:
Fluorocarbon Polymers*
Sulfhydryl Compounds*
Click Chemistry ; Polymerization ; Polymers ; Transition Temperature
References:
V. F. Cardoso, D. M. Correia, C. Ribeiro, M. M. Fernandes, S. Lanceros-Méndez, Polymers 2018, 10, 161.
S. Banerjee, Handbook of Specialty Fluorinated Polymers: Preparation, Properties, and Applications, Elsevier, New York 2015.
T. Y. Inan, H. Doan, E. E. Unveren, E. Eker, Int. J. Hydrogen Energy 2010, 35, 12038.
S. Krishnan, Y. J. Kwark, C. K. Ober, Chem. Rec. 2004, 4, 315.
T. Matsuura, S. Ando, S. Matsui, S. Sasaki, F. Yamamoto, Electron. Lett. 1993, 29, 2107.
J. J. Reisinger, M. A. Hillmyer, Prog. Polym. Sci. 2002, 27, 971.
W. Yao, Y. Li, X. Huang, Polymer 2014, 55, 6197.
S. Agar, E. Baysak, G. Hizal, U. Tunca, H. Durmaz, J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1181.
M. V. del Blanco, V. Gomez, P. Fleckenstein, T. Keplinger, E. Cabane, J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 885.
J. P. Kim, W. Y. Lee, J. W. Kang, S. K. Kwon, J. J. Kim, J. S. Lee, Macromolecules 2001, 34, 7817.
T. Yu, G. L. Wilkes, J. Rheol. 1996, 40, 1079.
L. Palangetic, N. K. Reddy, S. Srinivasan, R. E. Cohen, G. H. McKinley, C. Clasen, Polymer 2014, 55, 4920.
H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40, 2004.
C. E. Hoyle, C. N. Bowman, Angew. Chem., Int. Ed. 2010, 49, 1540.
Y. Kohsaka, K. Hagiwara, K. Ito, Polym. Chem. 2017, 8, 976.
O. Daglar, U. S. Gunay, G. Hizal, U. Tunca, H. Durmaz, Macromolecules 2019, 52, 3558.
C. R. Becer, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed. 2009, 48, 4900.
H. Mohapatra, J. Ayarza, E. C. Sanders, A. M. Scheuermann, P. J. Griffin, A. P. Esser-Kahn, Angew. Chem., Int. Ed. 2018, 57, 11208.
H. B. Song, A. Baranek, C. N. Bowman, Polym. Chem. 2016, 7, 603.
J. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Fokin, Angew. Chem., Int. Ed. 2014, 53, 9466.
B. Gao, L. Zhang, Q. Zheng, F. Zhou, L. M. Klivansky, J. Lu, Y. Liu, J. Dong, P. Wu, K. B. Sharpless, Nat. Chem. 2017, 9, 1083.
X. Xiao, F. Zhou, J. Jiang, H. Chen, L. Wang, D. Chen, Q. Xu, J. Lu, Polym. Chem. 2018, 9, 1040.
C. Yang, J. P. Flynn, J. Niu, Angew. Chem., Int. Ed. 2018, 57, 16194.
A. Mueller, T. Kowalewski, K. L. Wooley, Macromolecules 1998, 31, 776.
C. R. Becer, K. Babiuch, D. Pilz, S. Hornig, T. Heinze, M. Gottschaldt, U. S. Schubert, Macromolecules 2009, 42, 2387.
G. Delaittre, L. Barner, Polym. Chem. 2018, 9, 2679.
B. M. Rosen, G. Lligadas, C. Hahn, V. Percec, J. Polym. Sci,. Part A: Polym. Chem. 2009, 47, 3940.
J. Xu, L. Tao, C. Boyer, A. B. Lowe, T. P. Davis, Macromolecules 2010, 43, 20.
Y. Zhang, G. Chen, Y. Lin, L. Zhao, W. Z. Yuan, P. Lu, C. K. W. Jim, Y. Zhang, B. Z. Tang, Polym. Chem. 2015, 6, 97.
V. P. Beyer, B. Cattoz, A. Strong, D. J. Phillips, A. Schwarz, C. Remzi Becer, Polym. Chem. 2019, 10, 4259.
J. M. Noy, A. K. Friedrich, K. Batten, M. N. Bhebhe, N. Busatto, R. R. Batchelor, A. Kristanti, Y. Pei, P. J. Roth, Macromolecules 2017, 50, 7028.
J. M. Noy, Y. Li, W. Smolan, P. J. Roth, Macromolecules 2019, 52, 3083.
H. Turgut, A. C. Schmidt, P. Wadhwani, A. Welle, R. Müller, G. Delaittre, Polym. Chem. 2017, 8, 1288.
P. Boufflet, A. Casey, Y. Xia, P. N. Stavrinou, M. Heeney, Chem. Sci. 2017, 8, 2215.
E. Baysak, U. Tunca, G. Hizal, H. Durmaz, J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 1853.
A. Wild, A. Winter, M. D. Hager, H. Görls, U. S. Schubert, Macromol. Rapid Commun. 2012, 33, 517.
N. Cakir, U. Tunca, G. Hizal, H. Durmaz, Macromol. Chem. Phys. 2016, 217, 636.
F. Cavalli, H. Mutlu, S. O. Steinmueller, L. Barner, Polym. Chem. 2017, 8, 3778.
N. H. Park, G. dos Passos Gomes, M. Fevre, G. O. Jones, I. V. Alabugin, J. L. Hedrick, Nat. Commun. 2017, 8, 166.
C. J. Waschinski, J. C. Tiller, Biomacromolecules 2005, 6, 235.
S. C. Lee, S. W. Kang, C. Kim, I. C. Kwon, S. Y. Jeong, Polymer 2000, 41, 7091.
Grant Information:
China Scholarship Council; University of Warwick
Contributed Indexing:
Keywords: click reactions; multi-block copolymers; para-fluoro thiol reaction; thiol-bromo reaction
Substance Nomenclature:
0 (Fluorocarbon Polymers)
0 (Polymers)
0 (Sulfhydryl Compounds)
Entry Date(s):
Date Created: 20200929 Date Completed: 20210621 Latest Revision: 20210621
Update Code:
20240105
DOI:
10.1002/marc.202000409
PMID:
32989854
Czasopismo naukowe
Click reactions are utilized widely to modify chain ends and side groups of polymers while click polymerizations based on step-growth polymerization of bifunctional monomers have recently attracted increased attention of polymer chemists. Herein, the combination of two highly efficient click reactions, namely para-fluoro-thiol click and thiol-bromo substitution reactions, is demonstrated to form fluorinated polymers with tuned hydrophobicity owing to the nature of the dithiol linker compound. The key compound in this study is 2,3,4,5,6-pentafluoro benzyl bromide that provides the combination of thiol click reactions. The thiols used here are 4,4-thiobisbenzenthiol, 2,2'-(ethylenedioxy) diethanethiol, and 1,2-ethanedithiol that allow tuning of the properties of obtained polymers. The step-growth click reaction conditions are optimized by screening the effect of reaction temperature, base, solvent, and stochiometric ratio of the compounds. Thermal properties and hydrophobicity of synthesized polymers are determined via water contact angle, thermogravimetric analysis and differential scanning calorimetry measurements, showing thermal stability up to 300 °C, glass transition temperatures ranging from -25 to 82 °C and water contact angles ranging from 55 to 90 °C.
(© The Authors. Published by Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies