Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Diversity of α-tubulin transcripts in Lolium rigidum.

Tytuł:
Diversity of α-tubulin transcripts in Lolium rigidum.
Autorzy:
Chen J; Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia.; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
Chu Z; College of Life Sciences, South China Agricultural University, Guangzhou, China.
Han H; Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia.
Patterson E; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
Yu Q; Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia.
Powles S; Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia.
Źródło:
Pest management science [Pest Manag Sci] 2021 Feb; Vol. 77 (2), pp. 970-977. Date of Electronic Publication: 2020 Oct 10.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
MeSH Terms:
Herbicides*/pharmacology
Lolium*/genetics
Herbicide Resistance ; Humans ; Mutation ; Tubulin/genetics
References:
Cleveland DW, The tubulins: from DNA to RNA to protein and back again. Cell 34:330-332 (1983).
Mitchison T and Kirschner M, Dynamic instability of microtubule growth. Nature 312:237-242 (1984).
Nogales E, A structural view of microtubule dynamics. Cell Mol Life Sci 56:133-142 (1999).
Nogales E, Structural insights into microtubule function. Annu Rev Biochem 69:277-302 (2000).
Hardham AR, Structure of cortical microtubule arrays in plant cells. J Cell Biol 77:14-34 (1978).
Raff EC, Fackenthal JD, Hutchens JA, Hoyle HD and Turner FR, Microtubule architecture specified by a β-tubulin isoform. Science 275:70-73 (1997).
Ti S-C, Alushin GM and Kapoor TM, Human β-tubulin isotypes can regulate microtubule protofilament number and stability. Dev Cell 47:175-190. e175 (2018).
Steven D, Kopczak NAH, Haas NA, Hussey PJ, Silflow CD and Snustad DP, The small genome of Arabidopsis contains at least six expressed a-tubulin genes. 4:539-547 (1992).
Villemur R, Joyce CM, Haas NA, Goddard RH, Kopczak SD, Hussey PJ et al., α-Tubulin gene family of maize (Zea mays L.): evidence for two ancient α-tubulin genes in plants. J Mol Biol 227:81-96 (1992).
Qin X, Gianıì S and Breviario D, Molecular cloning of three rice α-tubulin isotypes: differential expression in tissues and during flower development. Biochim Biophys Acta 1354:19-23 (1997).
HUGO Gene Nomenclature Committee. Gene Group: Tubulins (TUB)Available: https://www.genenames.org/data/genegroup/#!/group/778 (2020).
Theurkauf WE, Baum H, Bo J and Wensink PC, Tissue-specific and constitutive alpha-tubulin genes of Drosophila melanogaster code for structurally distinct proteins. Proc Natl Acad Sci U S A 83:8477-8481 (1986).
Baum HJ, Livneh Y and Wensink PC, Homology maps of the Drosophila α-tubulin gene family: one of the four genes is different. Nucleic Acids Res 11:5569-5587 (1983).
Morejohn LC and Fosket DE, The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Ther 51:217-230 (1991).
Anthony RG and Hussey PJ, Dinitroaniline herbicide resistance and the microtubule cytoskeleton. Trends Plant Sci 4:112-116 (1999).
Ilan Y, Microtubules: from understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 234:7923-7937 (2018).
Jordan MA and Wilson L, Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253 (2004).
Perez EA, Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8:2086-2095 (2009).
Délye C, Menchari Y, Michel S and Darmency H, Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiol 136:3920-3932 (2004).
Chen J, Chu Z, Han H, Goggin DE, Yu Q, Sayer C et al., A Val-202-Phe α-tubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single Lolium rigidum population. Pest Manag Sci 76:645-652 (2020).
Anthony RG, Waldin TR, Ray JA, Bright SW and Hussey PJ, Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393:260-263 (1998).
Chu Z, Chen J, Nyporko A, Han H, Yu Q and Powles S, Novel α-tubulin mutations conferring resistance to dinitroaniline herbicides in Lolium rigidum. Front Plant Sci 9:97 (2018).
Yamamoto E, Zeng L and Baird WV, α-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. Plant Cell 10:297-308 (1998).
Chen J, Yu Q, Owen M, Han H and Powles S, Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population. Pest Manag Sci 74:925-932 (2018).
Owen MJ, Walsh MJ, Llewellyn RS and Powles SB, Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Crop Pasture Sci 58:711-718 (2007).
Duhoux A, Carrère S, Gouzy J, Bonin L and Délye C, RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol Biol 87:473-487 (2015).
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC et al., RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J 78:865-876 (2014).
Ashok Kumar T, CFSSP: Chou and Fasman Secondary Structure Prediction server. WIDE SPECTRUM: Research Journal 1:15-19 (2013).
Kumar S, Stecher G, Li M, Knyaz C and Tamura K, MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547-1549 (2018).
MacRAE TH, Tubulin post-translational modifications. Eur J Biochem 244:265-278 (1997).
Basak S, McElroy JS, Brown AM, Gonçalves CG, Patel JD and McCullough PE, Plastidic ACCase Ile-1781-Leu is present in pinoxaden-resistant southern crabgrass (Digitaria ciliaris). Weed Sci 68:41-50 (2020).
McElroy JS and Hall ND, Echinochloa colona with reported resistance to glyphosate conferred by aldo-keto reductase also contains a Pro-106-Thr EPSPS target site mutation. Plant Physiol 183:447 (2020).
Hashim S, Jan A, Sunohara Y, Hachinohe M, Ohdan H and Matsumoto H, Mutation of alpha-tubulin genes in trifluralin-resistant water foxtail (Alopecurus aequalis). Pest Manag Sci 68:422-429 (2012).
Freedman H, Luchko T, Luduena RF and Tuszynski JA, Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface. Proteins 79:2968-2982 (2011).
Zanni G, Colafati GS, Barresi S, Randisi F, Talamanca LF, Genovese E et al., Description of a novel TUBA1A mutation in Arg-390 associated with asymmetrical polymicrogyria and mid-hindbrain dysgenesis. Eur J Paediatr Neurol 17:361-365 (2013).
Hari M, Wang Y, Veeraraghavan S and Cabral F, Mutations in α-and β-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine1. Mol Cancer Ther 2:597-605 (2003).
Morrissette NS, Mitra A, Sept D and Sibley LD, Dinitroanilines bind α-tubulin to disrupt microtubules. Mol Biol Cell 15:1960-1968 (2004).
Duan J and Gorovsky MA, Both carboxy-terminal tails of α-and β-tubulin are essential, but either one will suffice. Curr Biol 12:313-316 (2002).
Yu Q, Ahmad-Hamdani MS, Han H, Christoffers MJ and Powles SB, Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species. Heredity 110:220-231 (2013).
Anthony RG and Hussey PJ, Double mutation in Eleusine indica α-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides. Plant J 18:669-674 (1999).
Ma C, Tran J, Li C, Ganesan L, Wood D and Morrissette N, Secondary mutations correct fitness defects in Toxoplasma gondii with dinitroaniline resistance mutations. Genetics 180:845-856 (2008).
Chen J, Goggin DE, Han H, Busi R, Yu Q and Powles S, Enhanced trifluralin metabolism can confer resistance in Lolium rigidum. J Agric Food Chem 66:7589-7596 (2018).
Grant Information:
LP170100903 Centre of Excellence for Environmental Decisions, Australian Research Council; China Scholarship Council; Grains Research and Development Corporation
Contributed Indexing:
Keywords: Lolium rigidum; Tubulin; dinitroaniline resistance; microtubule inhibitors; mutation
Substance Nomenclature:
0 (Herbicides)
0 (Tubulin)
Entry Date(s):
Date Created: 20200929 Date Completed: 20210114 Latest Revision: 20210114
Update Code:
20240105
DOI:
10.1002/ps.6109
PMID:
32991064
Czasopismo naukowe
Background: Tubulin, the target site of dinitroaniline herbicides, is encoded by small gene families in plants. To better characterize the mechanisms of target-site resistance to dinitroaniline herbicides in the globally important weedy species Lolium rigidum, attempts were made to amplify and sequence α-tubulin transcripts.
Results: Four α-tubulin isoforms (TUA1, TUA2, TUA3 and TUA4) were identified in L. rigidum. Variations in the number and sequence of transcripts encoding these α-tubulin proteins were found in individuals from the two L. rigidum populations examined. Within and among populations, differences in the 5'- and 3'-untranslated regions of cDNA in TUA3 and TUA4 were identified. Furthermore, a novel double mutation, Arg-390-Cys+Asp-442-Glu, in the TUA3 transcript was identified and has the potential to confer dinitroaniline resistance.
Conclusion: This research reveals the complexity of the α-tubulin gene family in individuals/populations of the cross-pollinated weedy species L. rigidum, and highlights the need for better understanding of the molecular architecture of tubulin gene families for detecting resistance point mutations. Although TUA4 is a commonly expressed α-tubulin isoform containing most frequently reported resistance mutations, other mutant tubulin isoforms may also have a role in conferring dinitroaniline resistance.
(© 2020 Society of Chemical Industry.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies