Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dynamical mesoscale model of absence seizures in genetic models.

Tytuł:
Dynamical mesoscale model of absence seizures in genetic models.
Autorzy:
Medvedeva TM; Saratov Branch of Kotel'nokov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov, Russia.; Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
Sysoeva MV; Saratov Branch of Kotel'nokov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov, Russia.; Yuri Gagarin State Technical University of Saratov, Saratov, Russia.
Lüttjohann A; Institute of Physiology I, Westfalische Wilhelms University, Münster, Germany.
van Luijtelaar G; Donders Centre for Cognition, Radboud University, Nijmegen, the Netherlands.
Sysoev IV; Saratov Branch of Kotel'nokov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov, Russia.; Saratov State University, Saratov, Russia.
Źródło:
PloS one [PLoS One] 2020 Sep 29; Vol. 15 (9), pp. e0239125. Date of Electronic Publication: 2020 Sep 29 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science
MeSH Terms:
Models, Neurological*
Epilepsy, Absence/*physiopathology
Neurons/*physiology
Somatosensory Cortex/*physiopathology
Thalamic Nuclei/*physiopathology
Animals ; Datasets as Topic ; Disease Models, Animal ; Electroencephalography ; Epilepsy, Absence/genetics ; Epilepsy, Absence/therapy ; Male ; Neural Pathways/physiopathology ; Rats ; Rats, Transgenic ; Somatosensory Cortex/cytology ; Thalamic Nuclei/cytology ; Transcranial Direct Current Stimulation/methods
References:
PLoS One. 2015 Aug 11;10(8):e0133594. (PMID: 26262879)
Neuroscience. 2016 Jun 2;324:191-201. (PMID: 26964688)
Brain Res. 2010 Dec 17;1366:257-62. (PMID: 20934415)
Neurobiol Dis. 2019 Oct;130:104488. (PMID: 31181283)
J Physiol. 1998 Jun 1;509 ( Pt 2):449-56. (PMID: 9575294)
Phys Life Rev. 2019 Mar;28:100-121. (PMID: 30236492)
Epilepsy Res. 2010 May;89(2-3):185-93. (PMID: 20092980)
Biol Cybern. 1995;72(4):347-56. (PMID: 7748961)
Eur J Neurosci. 2011 Apr;33(7):1281-90. (PMID: 21323765)
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):236-41. (PMID: 16003905)
Biophys J. 1993 Dec;65(6):2473-7. (PMID: 8312485)
J Physiol. 2020 Jun;598(12):2397-2414. (PMID: 32144956)
Behav Genet. 2003 Nov;33(6):635-55. (PMID: 14574120)
Exp Neurol. 1987 Apr;96(1):127-36. (PMID: 3104077)
J Neurosci. 2007 Jun 13;27(24):6590-9. (PMID: 17567820)
Neuroimage. 2019 Aug 15;197:69-79. (PMID: 31022569)
Neurobiol Dis. 2012 Jul;47(1):49-60. (PMID: 22465080)
PLoS Comput Biol. 2008 May 02;4(5):e1000072. (PMID: 18452000)
J Neurosci Methods. 2007 Aug 15;164(1):161-76. (PMID: 17531326)
Epilepsy Res. 2013 Sep;106(1-2):136-45. (PMID: 23602552)
Zh Vyssh Nerv Deiat Im I P Pavlova. 2016 Jan-Feb;66(1):103-12. (PMID: 27263280)
Eur J Neurosci. 1999 Jun;11(6):2175-81. (PMID: 10336687)
J Neurosci. 1998 Nov 1;18(21):9099-111. (PMID: 9787013)
Neural Netw. 2018 Feb;98:271-282. (PMID: 29288874)
Neurosci Lett. 1986 Oct 20;70(3):393-7. (PMID: 3095713)
PLoS One. 2014 Dec 22;9(12):e114316. (PMID: 25531883)
Nat Rev Neurosci. 2012 May 18;13(6):407-20. (PMID: 22595786)
Sci Rep. 2019 Feb 14;9(1):2100. (PMID: 30765744)
Neuroscience. 2011 Aug 11;188:125-34. (PMID: 21569824)
Int J Neural Syst. 2011 Apr;21(2):163-73. (PMID: 21442779)
Brain Stimul. 2013 May;6(3):241-7. (PMID: 22727526)
J Neurosci. 2002 Feb 15;22(4):1480-95. (PMID: 11850474)
Neuroscience. 2016 Feb 9;314:75-89. (PMID: 26633265)
PLoS One. 2011;6(5):e20572. (PMID: 21655239)
J Neurosci Methods. 2014 Apr 15;226:33-41. (PMID: 24486875)
Sci Rep. 2015 Jul 30;5:12618. (PMID: 26224066)
Neuroscience. 1999;92(4):1193-215. (PMID: 10426478)
PLoS Comput Biol. 2014 Nov 13;10(11):e1003947. (PMID: 25393751)
Epilepsia. 2010 Aug;51(8):1511-21. (PMID: 20132294)
Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3:15631-8. (PMID: 21368177)
J R Soc Interface. 2005 Mar 22;2(2):113-27. (PMID: 16849171)
Neurobiol Dis. 2007 Sep;27(3):292-300. (PMID: 17604636)
Sci Rep. 2017 May 10;7(1):1708. (PMID: 28490738)
Cereb Cortex. 2006 Sep;16(9):1296-313. (PMID: 16280462)
Chaos. 2015 Jul;25(7):073101. (PMID: 26232952)
Neuroscience. 2004;126(2):467-84. (PMID: 15207365)
J Physiol. 2003 Nov 1;552(Pt 3):881-905. (PMID: 12923213)
Epilepsy Behav. 2016 Nov;64(Pt A):44-50. (PMID: 27728902)
J Neural Transm Suppl. 1992;35:37-69. (PMID: 1512594)
PLoS Comput Biol. 2012;8(6):e1002560. (PMID: 22737064)
J Comput Neurosci. 2009 Apr;26(2):171-83. (PMID: 19083088)
Epilepsia. 2012 Nov;53(11):1948-58. (PMID: 23083325)
J Comp Neurol. 1998 Feb 9;391(2):180-203. (PMID: 9518268)
Front Physiol. 2015 Feb 05;6:16. (PMID: 25698972)
J Neurosci. 2011 Apr 27;31(17):6353-61. (PMID: 21525275)
J Comput Neurosci. 2017 Aug;43(1):65-79. (PMID: 28528529)
J Neurosci Methods. 2003 Mar 30;124(1):27-44. (PMID: 12648763)
Entry Date(s):
Date Created: 20200929 Date Completed: 20201103 Latest Revision: 20201103
Update Code:
20240105
PubMed Central ID:
PMC7524004
DOI:
10.1371/journal.pone.0239125
PMID:
32991590
Czasopismo naukowe
A mesoscale network model is proposed for the development of spike and wave discharges (SWDs) in the cortico-thalamo-cortical (C-T-C) circuit. It is based on experimental findings in two genetic models of childhood absence epilepsy-rats of WAG/Rij and GAERS strains. The model is organized hierarchically into two levels (brain structures and individual neurons) and composed of compartments for representation of somatosensory cortex, reticular and ventroposteriomedial thalamic nuclei. The cortex and the two thalamic compartments contain excitatory and inhibitory connections between four populations of neurons. Two connected subnetworks both including relevant parts of a C-T-C network responsible for SWD generation are modelled: a smaller subnetwork for the focal area in which the SWD generation can take place, and a larger subnetwork for surrounding areas which can be only passively involved into SWDs, but which is mostly responsible for normal brain activity. This assumption allows modeling of both normal and SWD activity as a dynamical system (no noise is necessary), providing reproducibility of results and allowing future analysis by means of theory of dynamical system theories. The model is able to reproduce most time-frequency changes in EEG activity accompanying the transition from normal to epileptiform activity and back. Three different mechanisms of SWD initiation reported previously in experimental studies were successfully reproduced in the model. The model incorporates also a separate mechanism for the maintenance of SWDs based on coupling analysis from experimental data. Finally, the model reproduces the possibility to stop ongoing SWDs with high frequency electrical stimulation, as described in the literature.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies