Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Ghrelin reverses ductular reaction and hepatic fibrosis in a rodent model of cholestasis.

Tytuł:
Ghrelin reverses ductular reaction and hepatic fibrosis in a rodent model of cholestasis.
Autorzy:
Petrescu AD; Central Texas Veterans Health Care System, Temple, TX, 76504, USA.; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
Grant S; Central Texas Veterans Health Care System, Temple, TX, 76504, USA.; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
Williams E; Central Texas Veterans Health Care System, Temple, TX, 76504, USA.; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
Frampton G; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA.
Reinhart EH; Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, 76502, USA.
Nguyen A; University of Mary Hardin-Baylor, Belton, TX, 76513, USA.
An S; Central Texas Veterans Health Care System, Temple, TX, 76504, USA.; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
McMillin M; Central Texas Veterans Health Care System, Temple, TX, 76504, USA.; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA.
DeMorrow S; Central Texas Veterans Health Care System, Temple, TX, 76504, USA. .; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA. .; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, 78701, USA. .
Źródło:
Scientific reports [Sci Rep] 2020 Sep 29; Vol. 10 (1), pp. 16024. Date of Electronic Publication: 2020 Sep 29.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Cholestasis/*drug therapy
Ghrelin/*administration & dosage
Liver Cirrhosis/*prevention & control
Receptors, Ghrelin/*genetics
ATP Binding Cassette Transporter, Subfamily B/genetics ; Acetyltransferases/metabolism ; Animals ; Cell Proliferation/drug effects ; Cells, Cultured ; Cholestasis/genetics ; Cholestasis/metabolism ; Disease Models, Animal ; Forkhead Box Protein O1/metabolism ; Ghrelin/metabolism ; Ghrelin/pharmacology ; Liver Cirrhosis/genetics ; Liver Cirrhosis/metabolism ; Mice ; Mice, Knockout ; Transaminases/blood ; ATP-Binding Cassette Sub-Family B Member 4
References:
Al Massadi, O., Lopez, M., Ferno, J., Dieguez, C. & Nogueiras, R. What is the real relevance of endogenous ghrelin? Peptides 70, 1–6 (2015).
Lim, C. T., Kola, B. & Korbonits, M. The ghrelin/GOAT/GHS-R system and energy metabolism. Rev. Endocr. Metab. Disord. 12, 173–186 (2011). (PMID: 2134058310.1007/s11154-011-9169-121340583)
St-Pierre, D. H., Wang, L. & Tache, Y. Ghrelin: A novel player in the gut-brain regulation of growth hormone and energy balance. News Physiol. Sci. 18, 242–246 (2003). (PMID: 1461415714614157)
Takahashi, H. et al. Ghrelin enhances glucose-induced insulin secretion in scheduled meal-fed sheep. J. Endocrinol. 189, 67–75 (2006). (PMID: 1661438210.1677/joe.1.0631016614382)
Meier, U. & Gressner, A. M. Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem. 50, 1511–1525 (2004). (PMID: 1526581810.1373/clinchem.2004.03248215265818)
Muller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015). (PMID: 26042199444329510.1016/j.molmet.2015.03.005)
Callahan, H. S. et al. Postprandial suppression of plasma ghrelin level is proportional to ingested caloric load but does not predict intermeal interval in humans. J. Clin. Endocrinol. Metab. 89, 1319–1324 (2004). (PMID: 1500162810.1210/jc.2003-03126715001628)
Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R. & Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol. Endocrinol. Metab. 287, E297-304 (2004). (PMID: 1503914910.1152/ajpendo.00582.200315039149)
Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974–977 (1996). (PMID: 868808610.1126/science.273.5277.9748688086)
Liu, B., Garcia, E. A. & Korbonits, M. Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes. Peptides 32, 2191–2207 (2011). (PMID: 2193017310.1016/j.peptides.2011.09.00621930173)
Tong, J. et al. The pharmacokinetics of acyl, des-acyl, and total ghrelin in healthy human subjects. Eur. J. Endocrinol. 168, 821–828 (2013). (PMID: 23482590374053110.1530/EJE-13-0072)
Ariyasu, H. et al. Transgenic mice overexpressing des-acyl ghrelin show small phenotype. Endocrinology 146, 355–364 (2005). (PMID: 1547195910.1210/en.2004-062915471959)
Yang, J., Brown, M. S., Liang, G., Grishin, N. V. & Goldstein, J. L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132, 387–396 (2008). (PMID: 1826707110.1016/j.cell.2008.01.01718267071)
Gutierrez, J. A. et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl. Acad. Sci. U S A 105, 6320–6325 (2008). (PMID: 18443287235979610.1073/pnas.0800708105)
Banks, W. A., Burney, B. O. & Robinson, S. M. Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood-brain barrier. Peptides 29, 2061–2065 (2008). (PMID: 18682266258607010.1016/j.peptides.2008.07.001)
De Vriese, C. et al. Ghrelin degradation by serum and tissue homogenates: Identification of the cleavage sites. Endocrinology 145, 4997–5005 (2004). (PMID: 1525649410.1210/en.2004-056915256494)
Yoshimoto, A. et al. Plasma ghrelin and desacyl ghrelin concentrations in renal failure. J. Am. Soc. Nephrol. 13, 2748–2752 (2002). (PMID: 1239704510.1097/01.ASN.0000032420.12455.7412397045)
Dornelles, C. T. et al. Ghrelin, leptin and insulin in cirrhotic children and adolescents: Relationship with cirrhosis severity and nutritional status. Regul. Pept. 180, 26–32 (2013). (PMID: 2314231410.1016/j.regpep.2012.10.00423142314)
Tacke, F. et al. Ghrelin in chronic liver disease. J. Hepatol. 38, 447–454 (2003). (PMID: 1266323610.1016/S0168-8278(02)00438-512663236)
Marchesini, G. et al. Plasma ghrelin concentrations, food intake, and anorexia in liver failure. J. Clin. Endocrinol. Metab. 89, 2136–2141 (2004). (PMID: 1512653110.1210/jc.2003-031771)
Takahashi, H., Kato, A., Onodera, K. & Suzuki, K. Fasting plasma ghrelin levels reflect malnutrition state in patients with liver cirrhosis. Hepatol. Res. 34, 117–123 (2006). (PMID: 1642355910.1016/j.hepres.2005.03.019)
Breidert, M., Zimmermann, T. F., Schneider, R., Ehninger, G. & Brabant, G. Ghrelin/leptin-imbalance in patients with primary biliary cirrhosis. Exp. Clin. Endocrinol. Diabetes 112, 123–126 (2004). (PMID: 1505253010.1055/s-2004-817819)
Moreno, M. et al. Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology 51, 974–985 (2010). (PMID: 2007756210.1002/hep.23421)
Iseri, S. O. et al. Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regul. Pept. 146, 73–79 (2008). (PMID: 1788419310.1016/j.regpep.2007.08.014)
Smit, J. J. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993). (PMID: 810617210.1016/0092-8674(93)90380-9)
Lammert, F. et al. Spontaneous cholecysto- and hepatolithiasis in Mdr2-/- mice: a model for low phospholipid-associated cholelithiasis. Hepatology 39, 117–128 (2004). (PMID: 1475283010.1002/hep.20022)
Katzenellenbogen, M. et al. Molecular mechanisms of liver carcinogenesis in the mdr2-knockout mice. Mol. Cancer Res. 5, 1159–1170 (2007). (PMID: 1802526110.1158/1541-7786.MCR-07-0172)
Trauner, M., Fickert, P. & Wagner, M. MDR3 (ABCB4) defects: A paradigm for the genetics of adult cholestatic syndromes. Semin. Liver Dis. 27, 77–98 (2007). (PMID: 1729517810.1055/s-2006-960172)
Rosmorduc, O., Hermelin, B. & Poupon, R. MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 120, 1459–1467 (2001). (PMID: 1131331610.1053/gast.2001.23947)
Jacquemin, E. et al. The wide spectrum of multidrug resistance 3 deficiency: From neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120, 1448–1458 (2001). (PMID: 1131331510.1053/gast.2001.2398411313315)
Petrescu, A.D., et al. Glucocorticoids cause gender-dependent reversal of hepatic fibrosis in the MDR2-knockout mouse model. Int. J. Mol. Sci. 18 (2017).
Petrescu, A. D. et al. Coordinated targeting of galanin receptors on cholangiocytes and hepatic stellate cells ameliorates liver fibrosis in multidrug resistance protein 2 knockout mice. Am. J. Pathol. 190, 586–601 (2020). (PMID: 3195303510.1016/j.ajpath.2019.10.02331953035)
Meng, F. et al. Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2(-/-) mice and human primary sclerosing cholangitis. Lab Invest. 98, 1465–1477 (2018). (PMID: 30143751621474610.1038/s41374-018-0101-0)
Kennedy, L. et al. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2(-/-) mice and human cholangiocarcinoma tumorigenesis. Hepatology 68, 1042–1056 (2018). (PMID: 29601088616570610.1002/hep.29898)
Jones, H. et al. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice. Hepatology 64, 1202–1216 (2016). (PMID: 27351144503369710.1002/hep.28704)
Schmidt, M. et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol. Cell Biol. 22, 7842–7852 (2002). (PMID: 1239115313472410.1128/MCB.22.22.7842-7852.2002)
Frescas, D., Valenti, L. & Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem. 280, 20589–20595 (2005). (PMID: 1578840210.1074/jbc.M41235720015788402)
Scerif, M., Goldstone, A. P. & Korbonits, M. Ghrelin in obesity and endocrine diseases. Mol. Cell Endocrinol. 340, 15–25 (2011). (PMID: 2134536310.1016/j.mce.2011.02.011)
Sun, Y. et al. Ghrelin suppresses Purkinje neuron P-type Ca(2+) channels via growth hormone secretagogue type 1a receptor, the betagamma subunits of Go-protein, and protein kinase a pathway. Cell Signal 26, 2530–2538 (2014). (PMID: 2504907710.1016/j.cellsig.2014.07.014)
Andrews, Z. B. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci. 34, 31–40 (2011). (PMID: 2103519910.1016/j.tins.2010.10.00121035199)
Castaneda, T. R., Tong, J., Datta, R., Culler, M. & Tschop, M. H. Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010). (PMID: 1989649610.1016/j.yfrne.2009.10.00819896496)
Gonzalez-Rey, E., Chorny, A. & Delgado, M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 130, 1707–1720 (2006). (PMID: 1669773510.1053/j.gastro.2006.01.04116697735)
Granata, R. et al. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3’,5’-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 148, 512–529 (2007). (PMID: 1706814410.1210/en.2006-026617068144)
Li, L. et al. Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats. Acta Pharmacol. Sin. 27, 527–535 (2006). (PMID: 1662650610.1111/j.1745-7254.2006.00319.x16626506)
Ceranowicz, P., et al. Essential role of growth hormone and IGF-1 in therapeutic effect of ghrelin in the course of acetic acid-induced colitis. Int. J. Mol. Sci. 18 (2017).
Kabil, N. N., Seddiek, H. A., Yassin, N. A. & Gamal-Eldin, M. M. Effect of ghrelin on chronic liver injury and fibrogenesis in male rats: Possible role of nitric oxide. Peptides 52, 90–97 (2014). (PMID: 2433397310.1016/j.peptides.2013.11.02224333973)
Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L. & Coffer, P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000). (PMID: 1105038810.1016/S0960-9822(00)00728-411050388)
Xing, Y. Q. et al. The regulation of FOXO1 and its role in disease progression. Life Sci. 193, 124–131 (2018). (PMID: 2915805110.1016/j.lfs.2017.11.03029158051)
Kops, G. J. et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol. 22, 2025–2036 (2002). (PMID: 1188459113368110.1128/MCB.22.7.2025-2036.2002)
Dijkers, P. F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol. 20, 9138–9148 (2000). (PMID: 1109406610217210.1128/MCB.20.24.9138-9148.2000)
Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000). (PMID: 1078389410.1038/35008115)
Frampton, G. et al. The novel growth factor, progranulin, stimulates mouse cholangiocyte proliferation via sirtuin-1-mediated inactivation of FOXO1. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1202-1211 (2012). (PMID: 23086914353245810.1152/ajpgi.00104.2012)
Demorrow, S. Progranulin: A novel regulator of gastrointestinal cancer progression. Transl. Gastrointest. Cancer 2, 145–151 (2013). (PMID: 240406213770304)
Frampton, G. et al. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Gut 61, 268–277 (2012). (PMID: 2206816210.1136/gutjnl-2011-30064322068162)
Carling, D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 45, 31–37 (2017). (PMID: 2823217910.1016/j.ceb.2017.01.00528232179)
Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012). (PMID: 22436748572648910.1038/nrm3311)
Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005). (PMID: 1598006410.1074/jbc.M50382420015980064)
Liang, Z. et al. AMPK: A novel target for treating hepatic fibrosis. Oncotarget 8, 62780–62792 (2017). (PMID: 28977988561754810.18632/oncotarget.19376)
Greer, E. L., Banko, M. R. & Brunet, A. AMP-activated protein kinase and FoxO transcription factors in dietary restriction-induced longevity. Ann. N. Y. Acad. Sci. 1170, 688–692 (2009). (PMID: 19686213281441610.1111/j.1749-6632.2009.04019.x)
Yun, H. et al. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. FEBS J. 281, 4421–4438 (2014). (PMID: 2506567410.1111/febs.12949)
McMillin, M., Frampton, G., Grant, S. & DeMorrow, S. The neuropeptide galanin is up-regulated during cholestasis and contributes to cholangiocyte proliferation. Am. J. Pathol. 187, 819–830 (2017). (PMID: 28196718539771010.1016/j.ajpath.2016.12.015)
Quinn, M. et al. Suppression of the HPA axis during extrahepatic biliary obstruction induces cholangiocyte proliferation in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G182-193 (2012). (PMID: 2197975710.1152/ajpgi.00205.2011)
Hall, C. et al. Regulators of cholangiocyte proliferation. Gene Expr. 17, 155–171 (2017). (PMID: 2741250510.3727/105221616X692568)
Maugham, M. L. et al. No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction. PLoS ONE 13, e0198495 (2018). (PMID: 30458004624567310.1371/journal.pone.0198495)
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408 (2001). (PMID: 118466091184660910.1006/meth.2001.1262)
Grant Information:
IK2 BX003486 United States BX BLRD VA; R01 DK112803 United States DK NIDDK NIH HHS; R01 DK082435 United States DK NIDDK NIH HHS
Substance Nomenclature:
0 (ATP Binding Cassette Transporter, Subfamily B)
0 (Forkhead Box Protein O1)
0 (Foxo1 protein, mouse)
0 (Ghrelin)
0 (Ghsr1a protein, mouse)
0 (Receptors, Ghrelin)
EC 2.3.1.- (Acetyltransferases)
EC 2.6.1.- (Transaminases)
Entry Date(s):
Date Created: 20200930 Date Completed: 20210113 Latest Revision: 20231213
Update Code:
20240105
PubMed Central ID:
PMC7525536
DOI:
10.1038/s41598-020-72681-5
PMID:
32994489
Czasopismo naukowe
The orexigenic peptide ghrelin (Ghr) stimulates hunger signals in the hypothalamus via growth hormone secretagogue receptor (GHS-R1a). Gastric Ghr is synthetized as a preprohormone which is proteolytically cleaved, and acylated by a membrane-bound acyl transferase (MBOAT). Circulating Ghr is reduced in cholestatic injuries, however Ghr's role in cholestasis is poorly understood. We investigated Ghr's effects on biliary hyperplasia and hepatic fibrosis in Mdr2-knockout (Mdr2KO) mice, a recognized model of cholestasis. Serum, stomach and liver were collected from Mdr2KO and FVBN control mice treated with Ghr, des-octanoyl-ghrelin (DG) or vehicle. Mdr2KO mice had lower expression of Ghr and MBOAT in the stomach, and lower levels of circulating Ghr compared to WT-controls. Treatment of Mdr2KO mice with Ghr improved plasma transaminases, reduced biliary and fibrosis markers. In the liver, GHS-R1a mRNA was expressed predominantly in cholangiocytes. Ghr but not DG, decreased cell proliferation via AMPK activation in cholangiocytes in vitro. AMPK inhibitors prevented Ghr-induced FOXO1 nuclear translocation and negative regulation of cell proliferation. Ghr treatment reduced ductular reaction and hepatic fibrosis in Mdr2KO mice, regulating cholangiocyte proliferation via GHS-R1a, a G-protein coupled receptor which causes increased intracellular Ca 2+ and activation of AMPK and FOXO1, maintaining a low rate of cholangiocyte proliferation.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies