Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A hypothalamic novelty signal modulates hippocampal memory.

Tytuł:
A hypothalamic novelty signal modulates hippocampal memory.
Autorzy:
Chen S; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan. .
He L; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
Huang AJY; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Boehringer R; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Robert V; Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMRS1266, Paris, France.
Wintzer ME; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Polygalov D; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Weitemier AZ; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Tao Y; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Gu M; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Middleton SJ; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan.
Namiki K; Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wakoshi, Japan.
Hama H; Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wakoshi, Japan.
Therreau L; Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMRS1266, Paris, France.
Chevaleyre V; Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMRS1266, Paris, France.; GHU PARIS Psychiatry and Neuroscience, Paris, France.
Hioki H; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Miyawaki A; Laboratory for Cell Function and Dynamics, RIKEN Center for Brain Science, Wakoshi, Japan.; Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wakoshi, Japan.
Piskorowski RA; Institute of Psychiatry and Neuroscience of Paris, Université de Paris, INSERM UMRS1266, Paris, France.; GHU PARIS Psychiatry and Neuroscience, Paris, France.
McHugh TJ; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Japan. .; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan. .
Źródło:
Nature [Nature] 2020 Oct; Vol. 586 (7828), pp. 270-274. Date of Electronic Publication: 2020 Sep 30.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
MeSH Terms:
Hippocampus/*cytology
Hippocampus/*physiology
Memory/*physiology
Neural Pathways/*physiology
Animals ; CA2 Region, Hippocampal/cytology ; CA2 Region, Hippocampal/physiology ; Cognition ; Dentate Gyrus/cytology ; Dentate Gyrus/physiology ; Female ; Hypothalamus, Posterior/cytology ; Hypothalamus, Posterior/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons/metabolism ; Social Interaction
References:
Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci. 4, 193–202 (2003). (PMID: 10.1038/nrn1052)
van Kesteren, M. T., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012). (PMID: 10.1016/j.tins.2012.02.001)
Lisman, J. E. & Grace, A. A. The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005). (PMID: 10.1016/j.neuron.2005.05.002)
McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014). (PMID: 10.1038/nn.3843)
Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016). (PMID: 10.1038/nature19325)
Pan, W. X. & McNaughton, N. The supramammillary area: its organization, functions and relationship to the hippocampus. Prog. Neurobiol. 74, 127–166 (2004). (PMID: 10.1016/j.pneurobio.2004.09.003)
Saper, C. B. & Lowell, B. B. The hypothalamus. Curr. Biol. 24, R1111–R1116 (2014). (PMID: 10.1016/j.cub.2014.10.023)
Wirtshafter, D., Stratford, T. R. & Shim, I. Placement in a novel environment induces fos-like immunoreactivity in supramammillary cells projecting to the hippocampus and midbrain. Brain Res. 789, 331–334 (1998). (PMID: 10.1016/S0006-8993(97)01555-2)
Ito, M., Shirao, T., Doya, K. & Sekino, Y. Three-dimensional distribution of Fos-positive neurons in the supramammillary nucleus of the rat exposed to novel environment. Neurosci. Res. 64, 397–402 (2009). (PMID: 10.1016/j.neures.2009.04.013)
Kobayashi, Y. et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front. Behav. Neurosci. 7, 17 (2013). (PMID: 10.3389/fnbeh.2013.00017)
Allen Institute for Brain Science. Allen Mouse Brain Atlas http://mouse.brain-map.org/gene/show/12767 (2006).
Franklin, K. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic, 2007).
Hama, H. et al. ScaleS: an optical clearing palette for biological imaging. Nat. Neurosci. 18, 1518–1529 (2015). (PMID: 10.1038/nn.4107)
Soussi, R., Zhang, N., Tahtakran, S., Houser, C. R. & Esclapez, M. Heterogeneity of the supramammillary-hippocampal pathways: evidence for a unique GABAergic neurotransmitter phenotype and regional differences. Eur. J. Neurosci. 32, 771–785 (2010). (PMID: 10.1111/j.1460-9568.2010.07329.x)
Reijmers, L. G., Perkins, B. L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). (PMID: 10.1126/science.1143839)
Pedersen, N. P. et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat. Commun. 8, 1405 (2017). (PMID: 10.1038/s41467-017-01004-6)
Hashimotodani, Y., Karube, F., Yanagawa, Y., Fujiyama, F. & Kano, M. Supramammillary nucleus afferents to the dentate gyrus co-release glutamate and GABA and potentiate granule cell output. Cell Rep. 25, 2704–2715 (2018). (PMID: 10.1016/j.celrep.2018.11.016)
Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016). (PMID: 10.1038/nrn.2015.21)
Boehringer, R. et al. Chronic loss of CA2 transmission leads to hippocampal hyperexcitability. Neuron 94, 642–655 (2017). (PMID: 10.1016/j.neuron.2017.04.014)
Resendez, S. L. et al. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 40, 2282–2295 (2020). (PMID: 10.1523/JNEUROSCI.1515-18.2020)
Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014). (PMID: 10.1038/nature13307)
Strange, B. A., Witter, M. P., Lein, E. S. & Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669 (2014). (PMID: 10.1038/nrn3785)
Leutgeb, J. K., Leutgeb, S., Moser, M. B. & Moser, E. I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). (PMID: 10.1126/science.1135801)
McHugh, T. J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007). (PMID: 10.1126/science.1140263)
Wintzer, M. E., Boehringer, R., Polygalov, D. & McHugh, T. J. The hippocampal CA2 ensemble is sensitive to contextual change. J. Neurosci. 34, 3056–3066 (2014). (PMID: 10.1523/JNEUROSCI.2563-13.2014)
Chiang, M. C., Huang, A. J. Y., Wintzer, M. E., Ohshima, T. & McHugh, T. J. A role for CA3 in social recognition memory. Behav. Brain Res. 354, 22–30 (2018). (PMID: 10.1016/j.bbr.2018.01.019)
Hitti, F. L. & Siegelbaum, S. A. The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014). (PMID: 10.1038/nature13028)
Piskorowski, R. A. et al. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron 89, 163–176 (2016). (PMID: 10.1016/j.neuron.2015.11.036)
Alexander, G. M. et al. Social and novel contexts modify hippocampal CA2 representations of space. Nat. Commun. 7, 10300 (2016). (PMID: 10.1038/ncomms10300)
Smith, A. S., Williams Avram, S. K., Cymerblit-Sabba, A., Song, J. & Young, W. S. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry 21, 1137–1144 (2016). (PMID: 10.1038/mp.2015.189)
Meira, T. et al. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat. Commun. 9, 4163 (2018). (PMID: 10.1038/s41467-018-06501-w)
Chen, S, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018). (PMID: 10.1126/science.aaq1144)
Entry Date(s):
Date Created: 20201001 Date Completed: 20201214 Latest Revision: 20210226
Update Code:
20240105
DOI:
10.1038/s41586-020-2771-1
PMID:
32999460
Czasopismo naukowe
The ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory 1,2 . Although the importance of regions such as the ventral tegmental area 3,4 and locus coeruleus 5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus 6 . The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition.
Comment in: Trends Neurosci. 2021 Feb;44(2):79-81. (PMID: 33256999)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies