Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Expanded usage of the Challenge-Comet assay as a DNA repair biomarker in human populations: protocols for fresh and cryopreserved blood samples, and for different challenge agents.

Tytuł:
Expanded usage of the Challenge-Comet assay as a DNA repair biomarker in human populations: protocols for fresh and cryopreserved blood samples, and for different challenge agents.
Autorzy:
Valdiglesias V; Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Grupo DICOMOSA, Campus A Zapateira s/n, 15071, A Coruña, Spain. .; AE CICA-INIBIC. Oza, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15071, A Coruña, Spain. .
Sánchez-Flores M; AE CICA-INIBIC. Oza, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15071, A Coruña, Spain.; Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de La Educación, Universidade da Coruña, Grupo DICOMOSA, Campus Elviña s/n, 15071, A Coruña, Spain.
Fernández-Bertólez N; AE CICA-INIBIC. Oza, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15071, A Coruña, Spain.; Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de La Educación, Universidade da Coruña, Grupo DICOMOSA, Campus Elviña s/n, 15071, A Coruña, Spain.
Au W; University of Medicine, Pharmacy, Science and Technology, Gheorghe Marinescu nr. 38, 540139, Targu Mures, Romania.; University of Texas Medical Branch, Galveston, TX, USA.
Pásaro E; AE CICA-INIBIC. Oza, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15071, A Coruña, Spain.; Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de La Educación, Universidade da Coruña, Grupo DICOMOSA, Campus Elviña s/n, 15071, A Coruña, Spain.
Laffon B; AE CICA-INIBIC. Oza, Instituto de Investigación Biomédica de A Coruña (INIBIC), 15071, A Coruña, Spain.; Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de La Educación, Universidade da Coruña, Grupo DICOMOSA, Campus Elviña s/n, 15071, A Coruña, Spain.
Źródło:
Archives of toxicology [Arch Toxicol] 2020 Dec; Vol. 94 (12), pp. 4219-4228. Date of Electronic Publication: 2020 Sep 30.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag.
MeSH Terms:
Biological Monitoring*
Blood Specimen Collection*
Comet Assay*
Cryopreservation*
DNA Damage*
DNA Repair*/drug effects
DNA Repair*/radiation effects
Ultraviolet Rays*
Adult ; Biomarkers/blood ; Bleomycin/toxicity ; Female ; Humans ; Methyl Methanesulfonate/toxicity ; Risk Assessment ; Time Factors ; Young Adult
References:
Au WW, Salama SA (2006) Cytogenetic challenge assays for assessment of DNA repair capacities. Meth Mol Biol 314:25–42. https://doi.org/10.1385/1-59259-973-7:025. (PMID: 10.1385/1-59259-973-7:025)
Au WW, Salama SA, Sierra-Torres CH (2003) Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays. Environ Health Perspect 111:1843–1850. https://doi.org/10.1289/ehp.6632. (PMID: 10.1289/ehp.6632146305171241747)
Au WW, Giri AK, Ruchirawat M (2010) Challenge assay: a functional biomarker for exposureinduced DNA repair deficiency and for risk of cancer. Int J Hyg Environ Health 213:32–39. https://doi.org/10.1016/j.ijheh.2009.09.002. (PMID: 10.1016/j.ijheh.2009.09.00219818682)
Azqueta A, Slyskova J, Langie SA, O'Neill Gaivão I, Collins A (2014) Comet assay to measure DNA repair: approach and applications. Front Genet 5:288. https://doi.org/10.3389/fgene.2014.00288. (PMID: 10.3389/fgene.2014.00288252023234142706)
Azqueta A, Langie SAS, Boutet-Robinet E, Duthie S, Ladeira C, Møller P, Collins AR, Godschalk RWL, Working Group 5 of the hCOMET project (CA15132) (2019) DNA repair as a human biomonitoring tool: comet assay approaches. Mutat Res 781:71–87. https://doi.org/10.1016/j.mrrev.2019.03.002. (PMID: 10.1016/j.mrrev.2019.03.00231416580)
Cebulska-Wasilewska A, Wierzewska A, Dyga WZD, Siffel C, Horvath M, Au WW (2000) Induction of DNA and cytogenetic damage in lymphocytes of Polish workers exposed to pesticides. Centrol Europ J Occup Environ Med 6:272–287.
Cebulska-Wasilewska A, Panek A, Zabinski Z, Moszczynski P, Au WW (2005) Occupational exposure to mercury vapour on genotoxicity and DNA repair. Mutat Res 586:102–114. https://doi.org/10.1016/j.mrgentox.2005.06.009. (PMID: 10.1016/j.mrgentox.2005.06.00916125447)
Cheng L, Wang LE, Spitz MR, Wei Q (2001) Cryopreserving whole blood for functional assays using viable lymphocytes in molecular epidemiology studies. Cancer Lett 166:155–163. https://doi.org/10.1016/s0304-3835(01)00400-1. (PMID: 10.1016/s0304-3835(01)00400-111311488)
Chen J, Stubbe J (2005) Bleomycins: towards better therapeutics. Nat Rev Cancer 5:102–112. https://doi.org/10.1038/nrc1547. (PMID: 10.1038/nrc154715685195)
Cipollini M, He J, Rossi P, Baronti F, Micheli A, Rossi AM, Barale R (2006) Can individual repair kinetics of UVC-induced DNA damage in human lymphocytes be assessed through the comet assay? Mutat Res 601:150–161. https://doi.org/10.1016/j.mrfmmm.2006.06.004. (PMID: 10.1016/j.mrfmmm.2006.06.00416905157)
De Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21:453–460. https://doi.org/10.1093/carcin/21.3.453. (PMID: 10.1093/carcin/21.3.45310688865)
Duthie SJ, Pirie L, Jenkinson AM, Narayanan S (2002) Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: endogenous and induced DNA damage, antioxidant status and repair capability. Mutagenesis 17:211–214. https://doi.org/10.1093/mutage/17.3.211. (PMID: 10.1093/mutage/17.3.21111971991)
El-Zein RA, Monroy CM, Cortes A, Spitz MR, Greisinger A, Etzel CJ (2010) Rapid method for determination of DNA repair capacity in human peripheral blood lymphocytes amongst smokers. BMC Cancer 10:439. https://doi.org/10.1186/1471-2407-10-439. (PMID: 10.1186/1471-2407-10-439207189822933626)
Figueroa-González G, Pérez-Plasencia C (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett 13:3982–3988. https://doi.org/10.3892/ol.2017.6002. (PMID: 10.3892/ol.2017.6002285886925452911)
Fu XJ, Shi XJ, Lin K, Lin H, Huang WH, Zhang GJ, Au WW (2015) Environmental and DNA repair risk factors for breast cancer in South China. Int J Hyg Environ Health 218:313–318. https://doi.org/10.1016/j.ijheh.2015.01.001. (PMID: 10.1016/j.ijheh.2015.01.00125616561)
Green MH, Waugh AP, Lowe JE, Harcourt SA, Cole J, Arlett CF (1994) Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation. Mutat Res 315:25–32. https://doi.org/10.1016/0921-8777(94)90024-8. (PMID: 10.1016/0921-8777(94)90024-87517007)
Harms C, Salama SA, Sierra-Torres CH, Cajas-Salazar N, Au WW (2004) Polymorphisms in DNA repair genes, chromosome aberrations, and lung cancer. Environ Mol Mutagen 44:74–82. https://doi.org/10.1002/em.20031. (PMID: 10.1002/em.2003115199549)
Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078. https://doi.org/10.1038/nature08467. (PMID: 10.1038/nature084671984725819847258)
Kaina B, Izzotti A, Xu J, Christmann M, Pulliero A, Zhao X, Dobreanu M, Au WW (2018) Inherent and toxicant-provoked reduction in DNA repair capacity: a key mechanism for personalized risk assessment, cancer prevention and intervention, and response to therapy. Int J Hyg Environ Health 221:993–1006. https://doi.org/10.1016/j.ijheh.2018.07.003. (PMID: 10.1016/j.ijheh.2018.07.00330041861)
Laffon B, Valdiglesias V, Pasaro E, Mendez J (2010) The organic selenium compound selenomethionine modulates bleomycin-induced DNA damage and repair in human leukocytes. Biol Trace Elem Res 133:12–19. https://doi.org/10.1007/s12011-009-8407-9. (PMID: 10.1007/s12011-009-8407-919468696)
Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89–108. https://doi.org/10.1016/j.mito.2005.02.002. (PMID: 10.1016/j.mito.2005.02.00216050976)
Llorente B, Smith CE, Symington LS (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7:859–864. https://doi.org/10.4161/cc.7.7.5613. (PMID: 10.4161/cc.7.7.561318414031)
Ma W, Westmoreland JW, Gordenin DA, Resnick MA (2011) Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease. PLoS Genet 7:e1002059. https://doi.org/10.1371/journal.pgen.1002059. (PMID: 10.1371/journal.pgen.1002059215525453084215)
Møller P, Azqueta A, Boutet-Robinet E, Koppen G, Bonassi S, Milić M, Gajski G, Costa S, Teixeira JP, Costa Pereira C, Dusinska M, Godschalk R, Brunborg G, Gutzkow KB, Giovannelli L, Cooke MS, Richling E, Laffon B, Valdiglesias V, Basaran N, del Bo’ C, Zegura B, Novak M, Stopper H, Vodicka P, Vodenkova S, Moraes de Andrade V, Sramkova M, Gabelova A, Collins A, Langie S (2020) Minimum information for reporting comet assay (MIRCA) procedures and results. Nat Protoc (in press).
Ori Y, Herman M, Weinstein T, Chagnac A, Zevin D, Milo G, Gafter U, Malachi T (2004) Spontaneous DNA repair in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 320:578–586. https://doi.org/10.1016/j.bbrc.2004.05.200. (PMID: 10.1016/j.bbrc.2004.05.20015219868)
Paz-Elizur T, Leitner-Dagan Y, Meyer KB, Markus B, Giorgi FM, O'Reilly M, Kim H, Evgy Y, Fluss R, Freedman LS, Rintoul RC, Ponder B, Livneh Z (2019) DNA repair biomarker for lung cancer risk and its correlation with airway cells gene expression. JNCI Cancer Spectr 4:pkz067. https://doi.org/10.1093/jncics/pkz067. (PMID: 10.1093/jncics/pkz067320644577012022)
Povirk LF, Austin MJ (1991) Genotoxicity of bleomycin. Mutat Res 257:127–143. https://doi.org/10.1016/0165-1110(91)90022-n. (PMID: 10.1016/0165-1110(91)90022-n1706477)
Rao NM, Pai SA, Shinde SR, Ghosh SN (1998) Reduced DNA repair capacity in breast cancer patients and unaffected individuals from breast cancer families. Cancer Genet Cytogenet 102:65–73. https://doi.org/10.1016/s0165-4608(97)00303-8. (PMID: 10.1016/s0165-4608(97)00303-89530343)
Ruchirawat M, Cebulska-Wasilewska A, Au WW (2013) Evidence for exposure-induced DNA repair abnormality is indicative of health and genetic risk. Int J Hyg Environ Health 216:566–573. https://doi.org/10.1016/j.ijheh.2013.03.003. (PMID: 10.1016/j.ijheh.2013.03.00323545294)
Sánchez-Flores M, Pásaro E, Bonassi S, Laffon B, Valdiglesias V (2015) γH2AX assay as DNA damage biomarker for human population studies: defining experimental conditions. Toxicol Sci 144:406–413. https://doi.org/10.1093/toxsci/kfv011. (PMID: 10.1093/toxsci/kfv01125616596)
Schantz SP, Hsu TC (1989) Mutagen-induced chromosome fragility within peripheral blood lymphocytes of head and neck cancer patients. Head Neck 11:337–342. https://doi.org/10.1002/hed.2880110409. (PMID: 10.1002/hed.28801104092473966)
Schärer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5:a012609. https://doi.org/10.1101/cshperspect.a012609. (PMID: 10.1101/cshperspect.a012609240860423783044)
Seeberg E, Eide L, Bjørås M (1995) The base excision repair pathway. Trends Biochem Sci 20:391–397. https://doi.org/10.1016/s0968-0004(00)89086-6. (PMID: 10.1016/s0968-0004(00)89086-68533150)
Slyskova J, Naccarati A, Polakova V, Pardini B, Vodickova L, Stetina R, Schmuczerova J, Smerhovsky Z, Lipska L, Vodicka P (2011) DNA damage and nucleotide excision repair capacity in healthy individuals. Environ Mol Mutagen 52:511–517. https://doi.org/10.1002/em.20650. (PMID: 10.1002/em.2065021520291)
Speit G, Leibiger C, Kuehner S, Hogel J (2013) Further investigations on the modified comet assay for measuring aphidicolin-block nucleotide excision repair. Mutagenesis 28:145–151. https://doi.org/10.1093/mutage/ges063. (PMID: 10.1093/mutage/ges06323221037)
Trzeciak AR, Barnes J, Evans MK (2008) A modified alkaline comet assay for measuring DNA repair capacity in human populations. Radiat Res 169:110–121. https://doi.org/10.1667/RR1101.1. (PMID: 10.1667/RR1101.1181599595217477)
Valdiglesias V, Pásaro E, Méndez J, Laffon B (2011) Assays to determine DNA repair ability. J Toxicol Environ Health A 74:1094–1109. https://doi.org/10.1080/15287394.2011.582320. (PMID: 10.1080/15287394.2011.58232021707433)
Valdiglesias V, Costa C, Sharma V, Kilic G, Pasaro E, Teixeira JP, Dhawan A, Laffon B (2013) Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 57:352–361. https://doi.org/10.1016/j.fct.2013.04.010. (PMID: 10.1016/j.fct.2013.04.01023597443)
Visvardis EE, Tassiou AM, Piperakis SM (1997) Study of DNA damage induction and repair capacity of fresh and cryopreserved lymphocytes exposed to H2O2 and g-irradiation with the alkaline comet assay. Mutat Res 383:71–80. https://doi.org/10.1016/s0921-8777(96)00047-x. (PMID: 10.1016/s0921-8777(96)00047-x9042421)
Watters GP, Smart DJ, Harvey JS, Austin CA (2009) H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 679:50–58. https://doi.org/10.1016/j.mrgentox.2009.07.007. (PMID: 10.1016/j.mrgentox.2009.07.00719628053)
Wei Z, Lifen J, Jiliang H, Jianlin L, Baohong W, Hongping D (2005) Detecting DNA repair capacity of peripheral lymphocytes from cancer patients with UVC challenge test and bleomycin challenge test. Mutagenesis 20:271–277. https://doi.org/10.1093/mutage/gei037. (PMID: 10.1093/mutage/gei03715899932)
Xu J, Sram RJ, Cebulska-Wasilewska A, Miloradov MV, Sardas S, Au WW (2020) Challengecomet assay, a functional and genomic biomarker for precision risk assessment and disease prevention among exposed workers. Toxicol Appl Pharmacol 397:115011. https://doi.org/10.1016/j.taap.2020.115011. (PMID: 10.1016/j.taap.2020.11501132305282)
Yamauchi T, Kawai Y, Ueda T (2002) Inhibition of nucleotide excision repair by fludarabine in normal lymphocytes in vitro, measured by the alkaline single cell gel electrophoresis (comet) assay. Jpn J Cancer Res 93:567–573. https://doi.org/10.1111/j.1349-7006.2002.tb01292.x. (PMID: 10.1111/j.1349-7006.2002.tb01292.x120364535927026)
Zhou C, Li Z, Diao H, Yu Y, Zhu W, Dai Y, Chen FF, Yang J (2006) DNA damage evaluated by Y H2AX foci formation by a selective group of chemical/physical stressors. Mutat Res 604:8–18. https://doi.org/10.1016/j.mrgentox.2005.12.004. (PMID: 10.1016/j.mrgentox.2005.12.004164235552756993)
Contributed Indexing:
Keywords: Biomonitoring; Cellular repair assay; Challenge-Comet assay; DNA repair; Genotoxicity; Health hazard assessment
Substance Nomenclature:
0 (Biomarkers)
11056-06-7 (Bleomycin)
AT5C31J09G (Methyl Methanesulfonate)
Entry Date(s):
Date Created: 20201001 Date Completed: 20210803 Latest Revision: 20210803
Update Code:
20240105
DOI:
10.1007/s00204-020-02881-5
PMID:
33000292
Czasopismo naukowe
Deficiencies in DNA damage response and repair (DDRR) can cause serious pathological outcomes; therefore, having an ability to determine individual DDRR would enhance specificities in health risk assessment and in determining individual's response to cancer therapies. However, most methods for evaluating DDRR are not fully appropriate for population studies. The Challenge-Comet assay has gained acceptance for this purpose. The assay has traditionally used X-rays as challenge agent and isolated peripheral blood mononuclear cells (PBMC) as cell specimen. To enhance the usefulness of the assay, the objectives of this investigation were to use differently processed blood samples, to employ other challenge agents with different mechanisms of induction of DNA damage/repair, and to generate protocols for detecting different DDRR capacities. Fresh and frozen blood samples were challenged with bleomycin, methyl methanesulfonate (MMS) and ultraviolet light. Significant induction of damage after all treatments, and progressive and time-dependent DDRR were observed. No significant differences were obtained in the DDRR capacities of fresh or frozen whole blood samples as compared to PBMC, except that fresh blood samples showed higher MMS-induced DDRR capacity than PBMC. Results from this study show that the Challenge-Comet assay can be used as routine biomarker of DDRR capacity in human biomonitoring studies, and that whole blood is also a useful biomatrix for this assay. The collected data allow us to recommend different protocols for the Challenge-Comet assay which are useful for evaluating DDRR capacities in several key DNA repair pathways. Consequently, the usefulness of the Challenge-Comet assay can be greatly expanded.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies