Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

CT-based dentulous mandibular alveolar ridge measurements as predictors of crown-to-implant ratio for short and extra short dental implants.

Tytuł :
CT-based dentulous mandibular alveolar ridge measurements as predictors of crown-to-implant ratio for short and extra short dental implants.
Autorzy :
Sivolella S; Department of Neurosciences, Dentistry Section, University of Padova, Via Giustiniani, 1, 35131, Padua, Italy. .
Meggiorin S; Department of Neurosciences, Dentistry Section, University of Padova, Via Giustiniani, 1, 35131, Padua, Italy.
Ferrarese N; Department of Neurosciences, Dentistry Section, University of Padova, Via Giustiniani, 1, 35131, Padua, Italy.
Lupi A; Department of Medicine-DIMED, Institute of Radiology, University Hospital of Padova, Padua, Italy.
Cavallin F; Solagna, Italy.
Fiorino A; Cellular and Molecular Clinical Research, Dentistry Unit of Head and Neck Clinical Area, School of Dentistry, Catholic University of Sacred Heart, Rome, Italy.
Giraudo C; Department of Medicine-DIMED, Institute of Radiology, University Hospital of Padova, Padua, Italy.
Pokaż więcej
Źródło :
Scientific reports [Sci Rep] 2020 Oct 01; Vol. 10 (1), pp. 16229. Date of Electronic Publication: 2020 Oct 01.
Typ publikacji :
Journal Article; Research Support, Non-U.S. Gov't
Język :
Imprint Name(s) :
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms :
Dental Implants*
Alveolar Process/*diagnostic imaging
Mandible/*diagnostic imaging
Tooth Crown/*diagnostic imaging
Adolescent ; Adult ; Alveolar Process/anatomy & histology ; Humans ; Jaw, Edentulous/diagnostic imaging ; Jaw, Edentulous/pathology ; Male ; Mandible/anatomy & histology ; Radiography, Dental ; Retrospective Studies ; Tomography, X-Ray Computed ; Tooth Crown/anatomy & histology ; Young Adult
References :
Levine, M. H., Goddard, A. L. & Dodson, T. B. Inferior alveolar nerve canal position: a clinical and radiographic study. J. Oral Maxillofac. Surg. 65, 470–474 (2007).
Braut, V., Bornstein, M. M., Lauber, R. & Buser, D. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 1-analysis of dentate sites. Int. J. Periodontics Restorative Dent. 32, 175–184 (2012).
De Oliveira Júnior, M. R. et al. Morphometrical analysis of the human mandibular canal: a CT investigation. Surg. Radiol. Anat. 33, 345–352 (2011).
Yashar, N., Engeland, C. G., Rosenfeld, A. L., Walsh, T. P. & Califano, J. V. Radiographic considerations for the regional anatomy in the posterior mandible. J. Periodontol. 83, 36–42 (2012). (PMID: 2154273221542732)
Frei, C., Buser, D. & Dula, K. Study on the necessity for cross-section imaging of the posterior mandible for treatment planning of standard cases in implant dentistry. Clin. Oral Implants Res. 15, 490–497 (2004). (PMID: 1524888515248885)
Alrahaimi, S. F. & Venkatesh, E. Localization of mandibular canal and assessment of the remaining alveolar bone in posterior segment of the mandible with single missing tooth using cone-beam computed tomography: a cross sectional comparative study. J. Korean Assoc. Oral Maxillofac. Surg. 43, 100–105 (2017). (PMID: 2846219428462194)
Bressan, E. et al. Ridge dimensions of the edentulous mandible in posterior sextants: an observational study on cone beam computed tomography radiographs. Implant Dent. 26, 66–72 (2017). (PMID: 2782471627824716)
Watanabe, H., Mohammad Abdul, M., Kurabayashi, T. & Aoki, H. Mandible size and morphology determined with CT on a premise of dental implant operation. Surg. Radiol. Anat. 32, 343–349 (2010). (PMID: 1981288419812884)
Zhang, W., Tullis, J. & Weltman, R. Cone beam computerized tomography measurement of alveolar ridge at posterior mandible for implant graft estimation. J. Oral Implantol. 41, e231-237 (2015). (PMID: 2553589025535890)
Cawood, J. I. & Howell, R. A. A classification of the edentulous jaws. Int. J. Oral Maxillofac. Surg. 17, 232–236 (1988).
Ulm, C. W. et al. Location of the mandibular canal within the atrophic mandible. Br. J. Oral Maxillofac. Surg. 31, 370–375 (1993).
Al-Johany, S. S., Al Amri, M. D., Alsaeed, S. & Alalola, B. Dental implant length and diameter: a proposed classification scheme. J. Prosthodont. 26, 252–260 (2017).
Esposito, M. et al. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst. Rev. 7, CD003607 (2009).
Lee, S. A., Lee, C. T., Fu, M. M., Elmisalati, W. & Chuang, S. K. Systematic review and meta-analysis of randomized controlled trials for the management of limited vertical height in the posterior region: short implants (5 to 8 mm) vs longer implants (> 8 mm) in vertically augmented sites. Int. J. Oral Maxillofac. Implants 29, 1085–1097 (2014).
Camps-Font, O. et al. Interventions for dental implant placement in atrophic edentulous mandibles: vertical bone augmentation and alternative treatments. A meta-analysis of randomized clinical trials. J. Periodontol. 87, 1444–1457 (2016).
Tong, Q., Zhang, X. & Yu, L. Meta-analysis of randomized controlled trials comparing clinical outcomes between short implants and long implants with bone augmentation procedure. Int. J. Oral Maxillofac. Implants 32, e25–e34 (2017).
Peñarrocha-Oltra, D. et al. Implant treatment in atrophic posterior mandibles: vertical regeneration with block bone grafts versus implants with 5.5-mm intrabony length. Int. J. Oral Maxillofac. Implants 29, 659–666 (2014).
Altaib, F. H., Alqutaibi, A. Y., Al-Fahd, A. & Eid, S. Short dental implant as alternative to long implant with bone augmentation of the atrophic posterior ridge: a systematic review and meta-analysis of RCTs. Quintessence Int. 50, 636–650 (2019).
Pieri, F., Forlivesi, C., Caselli, E. & Corinaldesi, G. Short implants (6 mm) vs. vertical bone augmentation and standard-length implants (≥ 9mm) in atrophic posterior mandibles: a 5-year retrospective study. Int. J. Oral Maxillofac. Surg. 46, 1607–1614 (2017).
Rossi, F. et al. 6-mm-long implants loaded with fiber-reinforced composite resin-bonded fixed prostheses (FRCRBFDPs). A 5-year prospective study. Clin. Oral Implants Res. 28, 1478–1483 (2017).
Rossi, F. et al. Use of short implants (6 mm) in a single-tooth replacement: a 5-year follow-up prospective randomized controlled multicenter clinical study. Clin. Oral Implants Res. 27, 458–464 (2016).
Slotte, C. et al. Four-millimeter-long posterior-mandible implants: 5-year outcomes of a prospective multicenter study. Clin. Implant Dent. Relat. Res. 17(Suppl 2), e385–e395 (2015).
Perelli, M., Abundo, R., Corrente, G. & Saccone, C. Short (5 and 7 mm long) porous implants in the posterior atrophic maxilla: a 5-year report of a prospective single-cohort study. Eur. J. Oral Implantol. 5, 265–272 (2012).
Nisand, D. & Renouard, F. Short implant in limited bone volume. Periodontology 2000(66), 72–96 (2014).
Laney, W. R. Glossary of oral and maxillofacial implants. Int. J. Oral Maxillofac. Implants 32, Gi-G200 (2017).
Mangano, F. et al. The effect of crown-to-implant ratio on the clinical performance of extra-short locking-taper implants. J. Craniofac. Surg. 27, 675–681 (2016).
Birdi, H., Schulte, J., Kovacs, A., Weed, M. & Chuang, S. K. Crown-to-implant ratios of short-length implants. J. Oral Implantol. 36, 425–433 (2010).
Blanes, R. J., Bernard, J. P., Blanes, Z. M. & Belser, U. C. A 10-year prospective study of ITI dental implants placed in the posterior region. II. Influence of the crown-to-implant ratio and different prosthetic treatment modalities on crestal bone loss. Clin. Oral Implants Res. 18, 707–714 (2007).
Villarinho, E. A. et al. Risk factors for single crowns supported by short (6-mm) implants in the posterior region: a prospective clinical and radiographic study. Clin. Implant Dent. Relat. Res. 19, 671–680 (2017).
Anitua, E., Alkhraist, M. H., Piñas, L., Begoña, L. & Orive, G. Implant survival and crestal bone loss around extra-short implants supporting a fixed denture: the effect of crown height space, crown-to-implant ratio, and offset placement of the prosthesis. Int. J. Oral Maxillofac. Implants 29, 682–689 (2014).
Ramos Verri, F. et al. Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test. J. Biomech. 48, 138–145 (2015).
Rokni, S. et al. An assessment of crown-to-root ratios with short sintered porous-surfaced implants supporting prostheses in partially edentulous patients. Int. J. Oral Maxillofac. Implants 20, 69–76 (2005).
Schulte, J., Flores, A. M. & Weed, M. Crown-to-implant ratios of single tooth implant-supported restorations. J. Prosthet. Dent. 98, 1–5 (2007).
Urdaneta, R. A., Rodriguez, S., McNeil, D. C., Weed, M. & Chuang, S. K. The effect of increased crown-to-implant ratio on single-tooth locking-taper implants. Int. J. Oral Maxillofac. Implants 25, 729–743 (2010).
Quaranta, A., Piemontese, M., Rappelli, G., Sammartino, G. & Procaccini, M. Technical and biological complications related to crown to implant ratio: a systematic review. Implant Dent. 23, 180–187 (2014).
Malchiodi, L., Cucchi, A., Ghensi, P., Consonni, D. & Nocini, P. F. Influence of crown-implant ratio on implant success rates and crestal bone levels: a 36-month follow-up prospective study. Clin. Oral Implants Res. 25, 240–251 (2014).
Adanez, M. H., Brezavšček, M., Vach, K., Fonseca, M. & Att, W. Clinical and radiographic evaluation of short implants placed in the posterior mandible. A one-year pilot split-mouth study. J. Oral Implantol. 44(4), 250–259 (2018). (PMID: 2971792229717922)
Mezzomo, L. A., Miller, R., Triches, D., Alonso, F. & Shinkai, R. S. Meta-analysis of single crowns supported by short (< 10 mm) implants in the posterior region. J. Clin. Periodontol. 41, 191–213 (2014).
Mertens, C., Meyer-Bäumer, A., Kappel, H., Hoffmann, J. & Steveling, H. G. Use of 8-mm and 9-mm implants in atrophic alveolar ridges: 10-year results. Int. J. Oral Maxillofac. Implants 27, 1501–1508 (2012). (PMID: 2318930223189302)
Nunes, M., Almeida, R. F., Felino, A. C., Malo, P. & De AraújoNobre, M. The influence of crown-to-implant ratio on short implant marginal bone loss. Int. J. Oral Maxillofac. Implants 31, 1156–1163 (2016).
Ghariani, L. et al. Does crown/implant ratio influence the survival and marginal bone level of short single implants in the mandibular molar? A preliminary investigation consisting of 12 patients. J. Oral Rehabil. 43, 127–135 (2016).
Guljé, F. L., Raghoebar, G. M., Erkens, W. A. & Meijer, H. J. Impact of crown-implant ratio of single restorations supported by 6-mm implants: a short-term case series study. Int. J. Oral Maxillofac. Implants 31, 672–675 (2016).
Lombardo, G. et al. Cumulative success rate of short and ultrashort implants supporting single crowns in the posterior maxilla: a 3-year retrospective study. Int. J. Dent. 2017, 8434281 (2017). (PMID: 55116585511658)
Di Fiore, A. et al. Influence of crown-to-implant ratio on long-term marginal bone loss around short implants. Int. J. Oral Maxillofac. Implants 34, 992–998 (2019).
Tang, Y., Yu, H., Wang, J., Gao, M. & Qiu, L. Influence of crown-to-implant ratio and different prosthetic designs on the clinical conditions of short implants in posterior regions: a 4-year retrospective clinical and radiographic study. Clin. Implant Dent. Relat. Res. 22, 119–127 (2020).
Malchiodi, L. et al. Relationship between crestal bone levels and crown-to-implant ratio of ultra-short implants with a microrough surface: a prospective study with 48 months of follow-up. J. Oral Implantol. 45, 18–28 (2019).
Garaicoa-Pazmiño, C. et al. Influence of crown/implant ratio on marginal bone loss: a systematic review. J. Periodontol. 85, 1214–1221 (2014).
Thompson, J. R. & Brodie, A. G. Factors in the position of the mandible. J. Am. Dent. Assoc. 29, 925 (1942).
Thompson, J. R. The rest position of the mandible and its significance to dental science. J. Am. Dent. Assoc. 33, 151–180 (1946).
Levartovsky, S., Matalon, S., Sarig, R., Baruch, O. & Winocur, E. The association between dental wear and reduced vertical dimension of the face: a morphologic study on human skulls. Arch. Oral Biol. 60, 174–180 (2015).
Kuć, J., Sierpińska, T. & Gołębiewska, M. The relationship between facial morphology and the structure of the alveolar part of the mandible in edentulous complete denture wearers. A preliminary study. Acta Odontol. Scand. 73, 57–66 (2015).
Misch, C. E. Contemporary Implant Dentistry 3rd edn. (Mosby, St. Louis, 2008).
Core Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).
Al-Ansari, A. Short implants supporting single crowns in atrophic jaws. Evid. Based Dent. 15, 85–86 (2014).
Gomez-Polo, M. et al. The correlation between crown-implant ratios and marginal bone resorption: a preliminary clinical study. Int. J. Prosthodont. 23, 33–37 (2010).
Kim, Y. K. et al. One-year prospective study of 7-mm-long implants in the mandible: installation technique and crown/implant ratio of 1.5 or less. J Oral Implantol 41, e30–e35 (2015).
Schneider, D., Witt, L. & Hämmerle, C. H. Influence of the crown-to-implant length ratio on the clinical performance of implants supporting single crown restorations: a cross-sectional retrospective 5-year investigation. Clin. Oral Implants Res. 23, 169–174 (2012).
Tawil, G., Aboujaoude, N. & Younan, R. Influence of prosthetic parameters on the survival and complication rates of short implants. Int. J. Oral Maxillofac. Implants 21, 275–282 (2006).
Sun, S. P., Moon, I. S., Park, K. H. & Lee, D. W. Effect of crown to implant ratio and anatomical crown length on clinical conditions in a single implant: a retrospective cohort study. Clin. Implant Dent. Relat. Res. 17, 724–731 (2015).
Hingsammer, L., Watzek, G. & Pommer, B. The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: a radiological and clincial short term analysis. Clin. Implant Dent. Relat. Res. 19, 1090–1098 (2017).
Liang, X. et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part I. On subjective image quality. Eur. J. Radiol. 75, 265–269 (2010).
Hadzik, J. et al. Short implants and conventional implants in the residual maxillary alveolar ridge: a 36-month follow-up observation. Med. Sci. Monit. 24, 5645–5652 (2018). (PMID: 61045556104555)
Thoma, D. S. et al. EAO Supplement Working Group 4—EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. Clin. Oral Implants Res. 26(Suppl 11), 154–169 (2015).
Esposito, M., Felice, P. & Worthington, H. V. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst. Rev. 5, CD008397 (2014).
Hadzik, J. et al. The influence of the crown-implant ratio on the crestal bone level and implant secondary stability: 36-month clinical study. Biomed. Res. Int. 2018, 4246874 (2018). (PMID: 59769885976988)
Substance Nomenclature :
0 (Dental Implants)
Entry Date(s) :
Date Created: 20201002 Date Completed: 20201230 Latest Revision: 20210327
Update Code :
PubMed Central ID :
Czasopismo naukowe
The purpose was to predict the crown-to-implant ratio variation in the edentulous posterior mandibles rehabilitated with short dental implants. Hence, vertical and horizontal dimensions of dentulous posterior mandibles in a sample of 18- to 25-year-olds were measured, and correlations of these dimensions with sex and site were investigated. Mandibular computed tomography scans from 100 subjects were considered. Vertical and horizontal bone and tooth measurements were taken at the sites of the second premolar (PM), and the mesial and distal roots of the first and second molars (M1m, M1d, M2m and M2d, respectively). A hypothetical crown-to-implant ratio (C/I R) was calculated assuming the insertion of short and extra short implants (5, 6 or 7 mm), at 1.5 mm from the inferior alveolar canal, maintaining the position of the existing occlusal plane. All vertical bone dimensions decreased from the PM to the M2d. Width measurements increased from the mesial (PM) to the distal sites (M1m, M1d, M2m and M2d). Males had significantly greater vertical and horizontal measurements than females at all sites. The mean C/I R was higher than 2 for all sizes of implant. The C/I R was lower for the second molar than for the second premolar, while it was similar for the first molar and the second premolar. Males had a higher C/I R than females. Computed tomography can be used to study the anatomical features of alveolar bone, and to predict some clinical aspects of prosthetic rehabilitation with implants, such as the crown-to-implant ratio in conditions of serious bone atrophy.
Erratum in: Sci Rep. 2021 Mar 26;11(1):7370. (PMID: 33772097)
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies