Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves.

Tytuł:
Integrated transcriptomic and metabolomic data reveal the flavonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves.
Autorzy:
Jiang T; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
Guo K; Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, Hubei, China.
Liu L; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
Tian W; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
Xie X; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
Wen S; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China.
Wen C; Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, China. .
Źródło:
Scientific reports [Sci Rep] 2020 Oct 01; Vol. 10 (1), pp. 16207. Date of Electronic Publication: 2020 Oct 01.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Metabolic Networks and Pathways*
Metabolome*
Transcriptome*
Flavonoids/*biosynthesis
Perilla frutescens/*metabolism
Plant Leaves/*metabolism
Plant Proteins/*metabolism
Computational Biology ; Flavonoids/genetics ; Gene Expression Regulation, Plant ; Molecular Sequence Annotation ; Perilla frutescens/genetics ; Perilla frutescens/growth & development ; Plant Leaves/genetics ; Plant Leaves/growth & development ; Plant Proteins/genetics
References:
Liu, J., Wan, Y., Zhao, Z. Z. & Chen, H. B. Determination of the content of rosmarinic acid by HPLC and analytical comparison of volatile constituents by GC–MS in different parts of Perilla frutescens (L). Britt. Chem. Cent. J. 7(1), 61 (2013). (PMID: 23548079)
Ha, T. J. et al. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against α–glucosidase and aldose reductase. Food Chem. 135, 1397–1403 (2012). (PMID: 22953872)
Igarashi, M. & Miyazaki, Y. A review on bioactivities of Perilla: Progress in research on the functions of Perilla as medicine and food. Evid-Based Compl. Altern. 2013(4), 925342 (2013).
Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 4, 147–157 (2006).
Hossain, M. K. et al. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 17(4), 569 (2016).
Ikarashi, N. et al. Anti-hypertensive effects of acacia polyphenol in spontaneously hypertensive rats. Int. J. Mol. Sci. 19(3), 700 (2018). (PMID: 5877561)
Tejada, S. et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem. 25(37), 4929–4945 (2018). (PMID: 28721824)
Luo, Y. et al. Discrimination of Citrus reticulata Blanco and Citrus reticulata “Chachi” as well as the Citrus reticulata “Chachi” within different storage years using ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J. Pharm. Biomed. Anal. 171, 218–231 (2019). (PMID: 31072532)
Pandey, A. et al. Genome-wide expression analysis and metabolite profiling elucidate transcriptional regulation of flavonoid biosynthesis and modulation under abiotic Stresses in Banana. Sci. Rep. 6, 31361 (2016). (PMID: 275393684990921)
Lattanzio, V., Cardinali, A. & Linsalata, V. Plant phenolics: A biochemical and physiological perspective. Rec. Adv. Polyphenol. Res. 3, 143-160 (2012).
Meng, J. et al. Metabolomics integrated with transcriptomics reveals redirection of the phenylpropanoids metabolic flux in Ginkgo biloba. J. Agric. Food Chem. 67(11), 3284–3291 (2019). (PMID: 30802049)
Saito, K. et al. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biol. 72, 21–34 (2013).
Takaya, M., Masayuki, K., Yasuhiko, T., Tomoko, E. I. & Mitsuo, O. Gene expression in flavonoid biosynthesis, Correlation with flavonoid accumulation in developing citrus fruit. Physiol. Plantarum 111(1), 66–74 (2008).
Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394 (2000). (PMID: 1114828511148285)
Gonzalez, A., Zhao, M., Leavitt, J. M. & Lloyd, A. M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53, 814–827 (2008). (PMID: 18036197)
Zhu, G. T. et al. Rewiring of the fruit metabolome in tomato breeding. Cell 172, 249–261 (2018). (PMID: 2932891429328914)
Paolo, B. et al. Gene expression and metabolite accumulation during strawberry (Fragaria×ananassa) fruit development and ripening. Planta 248, 1143–1157 (2018).
Dong, T. T. et al. Anthocyanin accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chem. 271, 18–28 (2019). (PMID: 30236664)
Lei, Z. X. et al. Transcriptome analysis reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations. Sci. Rep. 8, 6373 (2018). (PMID: 296862995913234)
Chen, J. H., Xia, Z. H. & Tan, R. X. High-performance liquid chromatographic analysis of bioactive triterpenes in Perilla frutescens. J. Pharm. Biomed. Anal. 32, 1175–1179 (2003). (PMID: 12907261)
Makino, T. et al. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother. Res. 17, 240–243 (2003). (PMID: 12672153)
Ueda, H., Yamazaki, C. & Yamazaki, M. Inhibitory effect of perilla leaf extract and luteolin on mouse skin tumor promotion. Biol. Pharm. Bull. 26, 560–563 (2003). (PMID: 12673045)
Banno, N. et al. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. Biotechnol. Biochem. 68, 85–90 (2004). (PMID: 14745168)
Schirrmacher, G., Skurk, T., Hauner, H. & Grassmann, J. Effect of Spinacia oleraceae L. and Perilla frutescens L. on antioxidants and lipid peroxidation in an intervention study in healthy individuals. Plant Food Hum. Nutr. 65(1), 71–76 (2010).
Feng, L. J., Yu, C. H., Ying, K. J., Hua, J. & Dai, X. Y. Hypolipidemic and antioxidant effects of total flavonoids of Perilla frutescens leaves in hyperlipidemia rats induced by high-fat diet. Food Res. Int. 44, 404–409 (2011).
Zhao, G., Qin, G. W., Wang, J., Chu, W. J. & Guo, L. H. Functional activation of monoamine transporters by luteolin and apigenin isolated from the fruit of Perilla frutescens (L). Britt Neurochem. Int. 56, 168–176 (2010). (PMID: 19815045)
Choi, D. Y. et al. Chrysoeriol potently inhibits the induction of nitric oxide synthase by blocking Ap-1 activation. J. Biomed. Sci. 12, 949–959 (2005). (PMID: 16228289)
Yang, Y. et al. Discovery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multiple myeloma cells in vitro. J. Huazhong U. Sci. Med. 30, 734–740 (2010).
Liu, Z. et al. Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicity in vitro. Chin. Med. J. 122, 2652–2656 (2009). (PMID: 19951587)
Pápay, Z. E. et al. Pharmaceutical and formulation aspects of Petroselinum crispum extract. Acta. Pharm. Hung. 82(1), 3–14 (2012). (PMID: 22570982)
Fukushima, A., Nakamura, M., Suzuki, H., Saito, K. & Yamazaki, M. High-throughput sequencing and de novo assembly of red and green forms of the Perilla frutescens var. crispa transcriptome. PloS ONE 10(6), e0129154 (2015). (PMID: 260702134466401)
Zhang, S. C. et al. Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochem. Eng. J. 103, 185–192 (2015).
Matoušek, J. et al. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus lupulus L.). BMC Plant Biol. 12, 27 (2012). (PMID: 223406613340318)
Morishita, T. et al. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol. 50, 2210–2222 (2009). (PMID: 19887540)
Terrier, N. et al. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in Grapevine and suggests additional targets in the pathway. Plant Physiol. 149, 1028–1041 (2009). (PMID: 190980922633825)
Xu, W. J., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WD40 complexes. Trends Plant Sci. 20, 176–185 (2015). (PMID: 25577424)
Stracke, R. et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677 (2007). (PMID: 174198451976380)
Li, X. W. et al. A R2R3-MYB transcription factor, GmMYB12B2, affects the expression levels of flavonoid biosynthesis genes encoding key enzymes in transgenic Arabidopsis plants. Gene 532, 72–79 (2013). (PMID: 24060295)
Grunewald, W. et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA 109, 1554–1559 (2012). (PMID: 22307611)
Yamazaki, M., Makita, Y., Springob, K. & Saito, K. Regulatory mechanisms for anthocyanin biosynthesis in chemotypes of Perilla frutescens var. crispa. Biochem. Eng. J. 14(3), 191–197 (2003).
Zhang, M., Chen, H. X., Li, J. L., Pei, Y. & Liang, Y. Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT Food Sci. Technol. 43(1), 181–185 (2010).
Rabino, I. & Mancinelli, A. L. Light, temperature, and anthocyanin production. Plant Physiol. 81, 922–924 (1986). (PMID: 166649261075451)
Wang, A. et al. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem. 260, 124–134 (2018). (PMID: 29699652)
Chen, W. et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites, application in the study of rice metabolomics. Mol. Plant 6(6), 1769–1780 (2013). (PMID: 23702596)
Yang, F. Y. et al. Analysis of metabolite accumulation related to pod color variation of Caragana intermedia. Molecules 24(4), 717 (2019). (PMID: 6412903)
Wang, Z. R., Cui, Y. Y., Vainstein, A., Chen, S. W. & Ma, H. Q. Regulation of Fig (Ficus carica L.) fruit color, metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Front. Plant Sci. 8, 1990 (2017). (PMID: 292093495701927)
Wang, S. et al. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem. 199, 8–17 (2016). (PMID: 26775938)
Huang, R. M., Huang, Y. J., Sun, Z. C., Huang, J. Q. & Wang, Z. J. Transcriptome analysis of genes involved in lipid biosynthesis in the developing embryo of pecan (Carya illinoinensis). J. Agric. Food Chem. 65, 4223–4236 (2017). (PMID: 28459558)
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). (PMID: 215724403571712)
Li, J. J., Jiang, C. R., Brown, J. B., Huang, H. & Bickel, P. J. Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc. Natl. Acad. Sci. USA 108, 19867–19872 (2011). (PMID: 22135461)
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). (PMID: 10592173102409)
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019). (PMID: 30321428)
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019). (PMID: 31441146)
Mao, X. Z., Cai, T., Olyarchuk, J. G. & Wei, L. P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21, 3787–3793 (2005). (PMID: 15817693)
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
Substance Nomenclature:
0 (Flavonoids)
0 (Plant Proteins)
Entry Date(s):
Date Created: 20201002 Date Completed: 20210112 Latest Revision: 20211001
Update Code:
20240105
PubMed Central ID:
PMC7530993
DOI:
10.1038/s41598-020-73274-y
PMID:
33004940
Czasopismo naukowe
Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains flavonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 differentially expressed genes and 223 flavonoid metabolites were identified in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total flavonoid contents. A total of 77 unigenes encoding 15 enzymes were identified as candidate genes involved in flavonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of flavonoids in the leaves of Perilla frutescens. Our results provide valuable information on the flavonoid metabolites and candidate genes involved in the flavonoid biosynthesis pathways in the leaves of Perilla frutescens.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies