Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Efficacy of 3D digital visualization in minimizing coaxial illumination and phototoxic potential in cataract surgery: pilot study.

Tytuł :
Efficacy of 3D digital visualization in minimizing coaxial illumination and phototoxic potential in cataract surgery: pilot study.
Autorzy :
Rosenberg ED; From the Department of Ophthalmology, Weill Cornell Medical College, New York, New York, USA.
Nuzbrokh Y
Sippel KC
Pokaż więcej
Źródło :
Journal of cataract and refractive surgery [J Cataract Refract Surg] 2021 Mar 01; Vol. 47 (3), pp. 291-296.
Typ publikacji :
Journal Article
Język :
Imprint Name(s) :
Publication: 2020- : [Hagerstown, MD] : Wolters Kluwer on behalf of ASCRS and ESCRS
Original Publication: [Fairfax, Va.] : American Society of Cataract and Refractive Surgery, [c1986-
References :
Hochheimer BF, D'Anna SA, Calkins JL. Retinal damage from light. Am J Ophthalmol 1979;88:1039–1044.
Boldrey EE, Ho BT, Griffith RD. Retinal burns occurring at cataract extraction. Ophthalmology 1984;91:1297–1302.
Brod RD, Barron BA, Suelflow JA, Franklin RM, Packer AJ. Phototoxic retinal damage during refractive surgery. Am J Ophthalmol 1986;102:121–123.
Byrnes GA, Antoszyk AN, Mazur DO, Kao TC, Miller SA. Photic maculopathy after extracapsular cataract surgery. A prospective study. Ophthalmology 1992;99:731–737; discussion 737–738.
Dogramaci M, Williams K, Lee E, Williamson TH. Foveal light exposure is increased at the time of removal of silicone oil with the potential for phototoxicity. Graefes Arch Clin Exp Ophthalmol 2013;251:35–39.
Kay CN, Pavan PR, Burrows A, Martino AZ. Neurosensory retinal detachment of the macula in retinal phototoxicity documented by optical coherence tomography. Retin Cases Brief Rep 2010;4:143–145.
Khwarg SG, Linstone FA, Daniels SA, Isenberg SJ, Hanscom TA, Geoghegan M, Straatsma BR. Incidence, risk factors, and morphology in operating microscope light retinopathy. Am J Ophthalmol 1987;103:255–263.
Kramer T, Brown R, Lynch M, Sternberg P Jr, Buchek G, L'Hernault N, Grossniklaus HE. Molteno implants and operating microscope-induced retinal phototoxicity. A clinicopathologic report. Arch Ophthalmol 1991;109:379–383.
Kweon EY, Ahn M, Lee DW, You IC, Kim MJ, Cho NC. Operating microscope light-induced phototoxic maculopathy after transscleral sutured posterior chamber intraocular lens implantation. Retina 2009;29:1491–1495.
Lindquist TD, Grutzmacher RD, Gofman JD. Light-induced maculopathy. Potential for recovery. Arch Ophthalmol 1986;104:1641–1647.
Long VW, Woodruff GH. Bilateral retinal phototoxic injury during cataract surgery in a child. J AAPOS 2004;8:278–279.
McDonald HR, Harris MJ. Operating microscope-induced retinal phototoxicity during pars plana vitrectomy. Arch Ophthalmol 1988;106:521–523.
McDonald HR, Irvine AR. Light-induced maculopathy from the operating microscope in extracapsular cataract extraction and intraocular lens implantation. Ophthalmology 1983;90:945–951.
Robertson DM, Feldman RB. Photic retinopathy from the operating room microscope. Am J Ophthalmol 1986;101:561–569.
Ross WH. Light-induced maculopathy. Am J Ophthalmol 1984;98:488–493.
Kleinmann G, Hoffman P, Schechtman E, Pollack A. Microscope-induced retinal phototoxicity in cataract surgery of short duration. Ophthalmology 2002;109:334–338.
Dogra M, Singh SR, Dogra MR. Operating microscope and endoilluminator-induced retinal phototoxic maculopathy after trans-scleral sutured posterior chamber intraocular lens. Indian J Ophthalmol 2019;67:692.
Fuller D, Machemer R, Knighton RW. Retinal damage produced by intraocular fiber optic light. Am J Ophthalmol 1978;85:519–537.
Michels M, Lewis H, Abrams GW, Han DP, Mieler WF, Neitz J. Macular phototoxicity caused by fiberoptic endoillumination during pars plana vitrectomy. Am J Ophthalmol 1992;114:287–296.
Oh SH, Kim KS, Lee WK. Outer retinal changes in endoilluminator-induced phototoxic maculopathy evident on spectral-domain optical coherence tomography. Clin Exp Optom 2015;98:381–384.
van den Biesen PR, Berenschot T, Verdaasdonk RM, van Weelden H, van Norren D. Endoillumination during vitrectomy and phototoxicity thresholds. Br J Ophthalmol 2000;84:1372–1375.
Agranat JS, Miller JB, Douglas VP, Douglas KAA, Marmalidou A, Cunningham MA, Houston SK III. The scope of three-dimensional digital visualization systems in vitreoretinal surgery. Clin Ophthalmol 2019;13:2093–2096.
Shkvorchenko DO, Sharafetdinov IK, Shahabutdinova PM. Two-port pars plana vitreomacular surgery without endoillumination [in Russian]. Vestn Oftalmol 2019;135:80–84.
Skinner CC, Riemann CD. “Heads up” digitally assisted surgical viewing for retinal detachment repair in a patient with severe kyphosis. Retin Cases Brief Rep 2018;12:257–259.
Eckardt C, Paulo EB. Heads-up surgery for vitreoretinal procedures: an experimental and clinical study. Retina 2016;36:137–147.
Kumar A, Hasan N, Kakkar P, Mutha V, Karthikeya R, Sundar D, Ravani R. Comparison of clinical outcomes between “heads-up” 3D viewing system and conventional microscope in macular hole surgeries: a pilot study. Indian J Ophthalmol 2018;66:1816–1819.
Qian Z, Wang H, Fan H, Lin D, Li W. Three-dimensional digital visualization of phacoemulsification and intraocular lens implantation. Indian J Ophthalmol 2019;67:341–343.
Weinstock RJ, Diakonis VF, Schwartz AJ, Weinstock AJ. Heads-up cataract surgery: complication rates, surgical duration, and comparison with traditional microscopes. J Refract Surg 2019;35:318–322.
Ohno H. Utility of three-dimensional heads-up surgery in cataract and minimally invasive glaucoma surgeries. Clin Ophthalmol 2019;13:2071–2073.
Michael R, Wegener A. Estimation of safe exposure time from an ophthalmic operating microscope with regard to ultraviolet radiation and blue-light hazards to the eye. J Opt Soc Am A Opt Image Sci Vis 2004;21:1388–1392.
Ham WT Jr, Mueller HA, Sliney DH. Retinal sensitivity to damage from short wavelength light. Nature 1976;260:153–155.
Landry RJ, Miller SA, Byrnes GA. Study of filtered light on potential retinal photic hazards with operation microscopes used for ocular surgery. Appl Opt 2002;41:802–804.
Brod RD, Ball SF, Packer AJ. A model for predicting the site of paraxial retinal lesions secondary to “coaxial” operating microscope illumination systems. Am J Ophthalmol 1987;104:516–523.
Brod RD, Olsen KR, Ball SF, Packer AJ. The site of operating microscope light-induced injury on the human retina. Am J Ophthalmol 1989;107:390–397.
Pavilack MA, Brod RD. Site of potential operating microscope light-induced phototoxicity on the human retina during temporal approach eye surgery. Ophthalmology 2001;108:381–385.
Urinowski E, Cahane M, Ashkenazi I, Blumenthal M, Avni I. Proximity-sensor dimmer device as an aid in the reduction of operating microscope-induced retinal phototoxicity. Ophthalmic Surg 1994;25:122–125.
Flynn HW Jr, Brod RD. Protection from operating microscope-induced retinal phototoxicity during pars plana vitrectomy. Arch Ophthalmol 1988;106:1032.
Irvine AR, Wood I, Morris BW. Retinal damage from the illumination of the operating microscope. An experimental study in pseudophakic monkeys. Arch Ophthalmol 1984;102:1358–1365.
Rodriguez-Marco NA, Andonegui-Navarro J, Compains-Silva E, Rebollo-Aguayo A, Aliseda-Perez-de-Madrid D, Aranguren-Laflin M. Optical coherence tomography and macular phototoxicity [in Spanish]. Arch Soc Esp Oftalmol 2008;83:267–271.
Mansour AM, Yunis MH, Medawar WA. Ocular coherence tomography of symptomatic phototoxic retinopathy after cataract surgery: a case report. J Med Case Rep 2011;5:133.
Entry Date(s) :
Date Created: 20201003 Latest Revision: 20210427
Update Code :
Czasopismo naukowe
Purpose: To compare the coaxial light intensity required during cataract surgery and rate of postoperative visual recovery, with surgical visualization achieved with a traditional analog operating microscope compared with a 3D digital visualization system.
Setting: Weill Cornell Medical Center, New York Presbyterian Hospital, New York, New York.
Design: Retrospective, consecutive, single-surgeon series.
Methods: Patients undergoing femtosecond laser-assisted cataract surgery were retrospectively grouped into either: (1) visualization using the binoculars of a standard operating microscope (traditional group) or (2) visualization using a 3D digital visualization system affixed to the same operating microscope (digital group). Note was made in each case of light intensity used, light exposure time, intraoperative and/or postoperative complications, and postoperative visual acuities.
Results: The study comprised 24 eyes in the traditional group and 27 eyes in the digital group. There were no intraoperative or postoperative complications in either group and no difference in mean light exposure time, but the mean light intensity used in the digital group was significantly less (18.5% ± 1.5%) than that in the traditional group (43.3% ± 3.7%; P < .001). Furthermore, the digital group achieved a postoperative day 1 visual acuity that was within 2 lines of the postoperative month 1 visual acuity a greater percentage of time than that in the traditional group (81.5% of eyes vs 54.2% of eyes; P = .04).
Conclusions: Light intensity was significantly decreased in patients who underwent cataract surgery assisted by the 3D digital visualization platform without an increase in complications or surgical time and possibly with a faster postoperative visual recovery.
(Copyright © 2021 Published by Wolters Kluwer on behalf of ASCRS and ESCRS.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies