Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Antifungal activity of marine-derived actinomycetes against Talaromyces marneffei.

Tytuł:
Antifungal activity of marine-derived actinomycetes against Talaromyces marneffei.
Autorzy:
Sangkanu S; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Rukachaisirikul V; Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Suriyachadkun C; BIOTEC Culture Collection, Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand.
Phongpaichit S; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.; Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Źródło:
Journal of applied microbiology [J Appl Microbiol] 2021 May; Vol. 130 (5), pp. 1508-1522. Date of Electronic Publication: 2020 Oct 18.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: 2022- : Oxford : Oxford University Press
Original Publication: Oxford : Published for the Society for Applied Bacteriology by Blackwell Science, c1997-
MeSH Terms:
Antibiosis*
Actinobacteria/*physiology
Antifungal Agents/*pharmacology
Talaromyces/*drug effects
Talaromyces/*physiology
Actinobacteria/chemistry ; Actinobacteria/isolation & purification ; Animals ; Antifungal Agents/isolation & purification ; Antifungal Agents/toxicity ; Aquatic Organisms/microbiology ; Caenorhabditis elegans/drug effects ; Caenorhabditis elegans/microbiology ; Geologic Sediments/microbiology ; Microbial Sensitivity Tests ; Talaromyces/ultrastructure
References:
Almeida-Paes, R., Frases, S., Monteiro, P.C.F., Gutierrez-Galhardo, M.C., Zancope-Oliveira, R.M. and Nosanchuk, J.D. (2009) Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect 11, 554-562.
Altieri, C., Cardillo, D., Bevilacqua, A. and Sinigaglia, M. (2007) Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides. J Food Prot 70, 1206-1212.
Avis, T.J. and Bélanger, R.R. (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67, 956-960.
Bredholt, H., Fjaervik, E., Johnsen, G. and Zotchev, S.B. (2008) Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. Mar Drugs 6, 12-24.
Breger, J., Fuchs, B.B., Aperis, G., Moy, T.I., Ausubel, F.M. and Mylonakis, E. (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3, e18.
Cao, L., Chen, D.L., Lee, C., Chan, C.M., Chan, K.M., Vanittanakom, N., Tsang, D.N.C. and Yuen, K.Y. (1998) Detection of specific antibodies to an antigenic mannoprotein for diagnosis of Penicillium marneffei penicilliosis. J Clin Microbiol 36, 3028-3031.
Chai, L.Y.A., Netea, M.G., Sugui, J., Vonk, A.G., van de Sande, W.W.J., Warris, A., Kwon-Chung, K.J. and Kullberg, B.J. (2010) Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 215, 915-920.
Chariyalertsak, S., Sirisanthana, T., Supparatpinyo, K. and Nelson, K.E. (1996) Seasonal variation of disseminated Penicillium marneffei infections in northern Thailand: a clue to the reservoir? J Infec Dis 173, 1490-1493.
Clinical and Laboratory Standards Institute (2008a) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard CLSI Document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute.
Clinical and Laboratory Standards Institute (2008b) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition; CLSI Document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute.
Cross, T. (1989) The actinomycetes II: growth and examination of actinomycetes-some guidelines. In Bergey’s Manual of Systematic Bacteriology, vol 4 ed. Williams, S.T. USA: Williams and Wilkins.
Cunha, M.M.L., Franzen, A.J., Seabra, S.H., Herbst, M.H., Vugman, N.V., Borba, L.P., de Souza, W. and Rozental, S. (2010) Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol 10, 80. https://doi.org/10.1186/1471-2180-10-80.
da Silva, M.B., Marques, A.F., Nosanchuk, J.D., Casadevall, A., Travassos, L.R. and Taborda, C.P. (2006) Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility. Microbes Infect 8, 197-205.
Dharmaraj, S. (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26, 2123-2139.
Eisenman, H.C., Mues, M. and Weber, S.E. (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology 153, 3954-3962.
Gamliel, A., Katan, J. and Cohen, E. (1989) Toxicity of chloronitrobenzenes to Fusarium oxysporum and Rhizoctonia solani as related to their structure. Phytoparasitica 17, 101-106.
Ghanem, N.B., Sabry, S.A., El-Sherit, Z.M. and Abu El-Ela, G.A. (2000) Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J Gen Appl Microbiol 46, 105-111.
Gómez, B.L., Nosanchuk, J.D., Díez, S., Youngchim, S., Aisen, P., Cano, L.E., Restrepo, A., Casadevall, A. et al. (2001) Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun 69, 5760-5767.
Guo, H., Shi, F., Li, M., Liu, Q., Yu, B. and Hu, L. (2015) Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system. BMC Complement Altern Med 15, 151. https://doi.org/10.1186/s12906-015-0675-7.
Hayakawa, M. and Nonomura, H. (1989) A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 3, 95-104.
Hayakawa, M., Otoguro, M., Takeuchi, T., Yamazaki, T. and Iimura, Y. (2000) Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie Van Leeuwenhoek 78, 171-185.
Hayakawa, M., Sadakata, T., Kajiura, T. and Nonomura, H. (1991) New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Ferment Bioeng 72, 320-326.
Huang, X., Li, D., Xi, L. and Mylonakis, E. (2014) Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei. PLoS One 9, e108764. https://doi.org/10.1371/journal.pone.0108764.
Ikeda, R., Sugita, T., Jacobson, E.S. and Shinoda, T. (2003) Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiol Immunol 47, 271-277.
Jain, S.C., Pancholi, B. and Jain, R. (2012) Antimicrobial, free radical scavenging activities and chemical composition of Peltophorum pterocarpum Baker ex K. Heyne stem extract. Der Pharma Chem 4, 2073-2079.
Kabara, J.J., Swieczkowski, D.M., Conley, A.J. and Truant, J. (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2, 23-28.
Kaewmalakul, J., Nosanchuk, J.D., Vanittanakom, N. and Youngchim, S. (2014) Melanization and morphological effects on antifungal susceptibility of Penicillium marneffei. Antonie Van Leeuwenhoek 106, 1011-1020.
Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C. et al. (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11, 384-396.
Khan, S.T., Tamura, T., Takagi, M. and Shin-ya, K. (2010) Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol 60, 2775-2779.
Lam, K.S. (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9, 245-251.
Le, T., Kinh, N.V., Cuc, N.T.K., Tung, N.L.N., Lam, N.T., Thuy, P.T.T., Cuong, D.D., Phuc, P.T.H. et al. (2017) A trial of itraconazole or amphotericin B for HIV-associated talaromycosis. N Engl J Med 376, 2329-3340.
Lin, J.N., Lin, H.H., Lai, C.H., Wang, J.L. and Yu, T.J. (2010) Renal transplant recipient infected with Penicillium marneffei. Lancet Infect Dis 10, 138.
Liu, D., Wei, L., Guo, T. and Tan, W. (2014) Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. PLoS One 9, e92610. https://doi.org/10.1371/journal.pone.0092610.
Magarvey, N.A., Keller, J.M., Bernan, V., Dworkin, M. and Sherman, D.H. (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70, 7520-7529.
Mylonakis, E., Ausubel, F.M., Perfect, J.R., Heitman, J. and Calderwood, S.B. (2002) Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci USA 99, 15675-15680.
Nakai, T., Uno, J., Ikeda, F., Tawara, S., Nishimura, K. and Miyaji, M. (2003) In vitro antifungal activity of Micafungin (FK463) against dimorphic fungi: comparison of yeast-like and mycelial forms. Antimicrob Agents Chemother 47, 1376-1381.
Nosanchuk, J.D. and Casadevall, A. (2003) Budding of melanized Cryptococcus neoformans in the presence or absence of L-dopa. Microbiology 149, 1945-1951.
Nosanchuk, J.D. and Casadevall, A. (2006) Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50, 3519-3528.
Pal, A.K., Gajjar, D.U. and Vasavada, A.R. (2014) DOPA and DHN pathway orchestrate melanin synthesis and in Aspergillus species. Med Mycol 52, 10-18.
Park, J.O., El-Tarabily, K.A., Ghisalberti, E.L. and Sivasithamparam, K. (2002) Pathogenesis of Streptoverticillium albireticuli on Caenorhabditis elegans and its antagonism to soil-borne fungal pathogens. Lett Appl Microbiol 35, 361-365.
Pasricha, S., Payne, M. and Canovas, D. (2013) Cell-type-specific transcriptional profiles of the dimorphic pathogen Penicillium marneffei reflect distinct reproductive, morphological, and environmental demands. G3: Genes - Genomes - Genetics 3, 1997-2014.
Phongpaichit, S., Pujenjob, N., Rukachaisirikul, V. and Ongsakul, M. (2005) Antimicrobial activities of the crude methanol extract of Acorus calamus Linn. Songklanakarin J Sci Technol 27, 517-523.
Pohl, C.H., Kock, J.L.F. and Thibane, V.S. (2011) Antifungal free fatty acids: a review. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, vol 1 ed. Méndez-Vilan, A. pp. 61-71. Spain: Formatex Research Center.
Ramesh, S. and Mathivanan, N. (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25, 2103-2111.
Riquelme, C., Hathaway, J.J.M., Dapkevicius, M.L.N.E., Miller, A.Z., Kooser, A., Northup, D.E., Jurado, V., Fernandez, O. et al. (2015) Actinobacterial diversity in volcanic caves and associated geomicrobiological interaction. Front Microbiol 6, 1342. https://doi.org/10.3389/fmicb.2015.01342.
Rosas, A.L., Nosanchuk, J.D., Feldmesser, M., Cox, G.M., McDade, H.C. and Casadevall, A. (2000) Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun 68, 2845-2853.
Saito, H. and Miura, K. (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619-629.
Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
Samson, R.A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K.A., Peterson, S.W., Varga, J. and Frisvad, J.C. (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70, 159-183.
Sangkanu, S., Rukachisirikul, V., Suriyachadkun, C. and Phongpaichit, S. (2017) Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microb Patho 112, 303-312.
Sar, B., Boy, S., Keo, K., Ngeth, C.C., Prak, N., Vann, M., Monchy, D. and Sarthou, J.L. (2006) In vitro antifungal-drug susceptibilities of mycelia and yeast forms of Penicillium marneffei isolates in Cambodia. J Clin Microbiol 44, 4208-4210.
Sathakis, A., Lim, K.P., Boan, P., Lavender, M., Erobel, J., Musk, M. and Heath, C.H. (2015) Penicillium marneffei infection in a lung transplant recipient. Transpl Infect Dis 17, 429-434.
Sem, X.H. and Rhen, M. (2012) Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS One 7, e45417. https://doi.org/10.1371/journal.pone.0045417.
Sifri, C.D., Begun, J., Ausubel, F.M. and Calderwood, S.B. (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71, 2208-2217.
Sim, S. and Hibberd, M.L. (2016) Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associated with fat metabolism and epithelial junction integrity. BMC Microbiol 16, https://doi.org/10.1186/s12866-016-0624-8.
Supaphon, P., Phongpaichit, S., Rukachaisirikul, V. and Sakayaroj, J. (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS One 8, e72520. https://doi.org/10.1371/journal.pone.0072520.
Taha, M., Shahsavari, E., Al-Hothaly, K., Mouradov, A., Smith, A.T., Ball, A.S. and Adetutu, E.M. (2015) Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Appl Biochem Biotechnol 175, 3709-3728.
Tam, E.W.T., Tsang, C.C., Lau, S.K.P. and Woo, P.C.Y. (2015) Polyketides toxins and pigments in Penicillium marneffei. Toxins 7, 4421-4436.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729.
Tan, M.W., Mahajan-Miklos, S. and Ausubel, F.M. (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96, 715-720.
Trček, J. and Teuber, M. (2002) Genetic and restriction analysis of the 16S-23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 208, 69-75.
van Duin, D., Casadevall, A. and Nosanchuk, J.D. (2002) Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother 46, 3394-3400.
Vanittanakom, N., Cooper, C.R., Fisher, M.C. and Sirisanthana, T. (2006) Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19, 95-110.
Volling, K., Thywissen, A., Brakhage, A. and Saluz, H.P. (2011) Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signaling. Cell Microbiol 13, 1130-1148.
Watve, M.G., Tickoo, R., Jog, M.M. and Bhole, B.D. (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176, 386-390.
Webster, N.S., Wilson, K.J., Blackall, L.L. and Hill, R.T. (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67, 434-444.
Williams, S.T. (1989) Bergey’s Manual of Systematic Bacteriology, vol 4. USA: Williams and Wilkins.
Wyche, T.P., Piotrowski, J.S. and Hou, Y. (2014) Forazoline A, a novel marine-derived polyketide with antifungal In vivo efficacy. Angew Chem Int Ed Engl 53, 11583-11586.
Youngchim, S., Hay, R.J. and Hamilton, A.J. (2005) Melanization of Penicillium marneffei in vitro and in vivo. Microbiology 151, 291-299.
Zeng, W., Qiu, Y., Lu, D., Zhang, J., Zhong, X. and Liu, G. (2015) A retrospective analysis of 7 human immunodeficiency virus-negative infants infected by Penicillium marneffei. Medicine 94, e1439. https://doi.org/10.1097/MD.0000000000001439.
Zhang, J. and Zhang, L. (2011) Improvement of isolation medium for actinomycetes. Mod Appl Sci 5, 124-127.
Zheng, Z., Zeng, W. and Huang, Y. (2000) Detection of antitumor and antimicrobial activities in marine organism associated actinomycetes isolated from the Taiwan Strait, China. FEMS Microbiol Lett 188, 87-91.
Zhang, X.Y., He, F., Wang, G.H., Bao, J., Xu, X.Y. and Qi, S.H. (2013) Diversity and antibacterial activity of culturable actinobacteria isolated from five species of the south China sea gorgonian corals. World J Microbiol Biotechnol 29, 1107-1116.
Grant Information:
TGIST 01-57-048 Thailand Graduate Institute of Science and Technology (TGIST); BRN 002G-56 National Center for Genetic Engineering and Biotechnology, under the BRT's Bioresources Utilization Program; The Center of Excellence for Innovation in Chemistry (PERCH-CIC); FDA-CO-2558-1283-TH The NSTDA Chair Professor grant of the Crown Property Bureau Foundation and the National Science and Technology Development Agency; PSU-PhD Scholarship 95000201 Graduate School, Prince of Songkla University
Contributed Indexing:
Keywords: Caenorhabditis elegans; Streptomyces; Talaromyces marneffei; antifungal activity; marine-derived actinomycetes
Substance Nomenclature:
0 (Antifungal Agents)
SCR Organism:
Talaromyces marneffei
Entry Date(s):
Date Created: 20201003 Date Completed: 20210429 Latest Revision: 20210429
Update Code:
20240105
DOI:
10.1111/jam.14877
PMID:
33010096
Czasopismo naukowe
Aims: This study aimed to isolate actinomycetes from marine environments and examine their antifungal activity against Talaromyces marneffei both in vitro and in vivo.
Methods and Results: Nineteen out of 101 actinomycete extracts were active and further determined for their minimum inhibitory concentrations (MIC). Three extracts of AMA50 that isolated from sediment showed strong antifungal activity against T. marneffei yeast (MICs ≤0·03-0·25 µg ml -1 ) and mould (MICs 0·5-16 µg ml -1 ) forms. The hexane extract from the cells of AMA50 (AMA50CH) exhibited the best activity against both the forms (MIC ≤ 1 µg ml -1 ). Three extracts from AMA50 killed the melanized yeast cells at 0·5 µg ml -1 . The AMA50CH was further tested for protective effects in Caenorhabditis elegans model. At concentrations of 1-8 µg ml -1 , the AMA50CH prolonged survival of T. marneffei-infected C. elegans with a 60-70% survival rate. The composition of AMA50CH was determined by gas chromatography-mass spectrometry. The major components were n-hexadecanoic acid, tetradecanoic acid and pentadecanoic acid. Sequencing analysis revealed that isolate AMA50 belonged to the genus Streptomyces.
Conclusions: The AMA50CH from Streptomyces sp. AMA50 was the most effective extract against T. marneffei.
Significance and Impact of the Study: Talaromyces marneffei is one of the most important thermally dimorphic pathogenic fungi. These results indicated the potency of marine-derived actinomycete extracts against T. marneffei both in vitro and in vivo.
(© 2020 The Society for Applied Microbiology.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies