Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The relationship between fleas and small mammals in households of the Western Yunnan Province, China.

Tytuł:
The relationship between fleas and small mammals in households of the Western Yunnan Province, China.
Autorzy:
Yin JX; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China. .
Cheng XO; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Luo YY; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Zhao QF; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Wei ZF; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Xu DD; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Wang MD; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Zhou Y; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Wang XF; School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
Liu ZX; Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, Yunnan Province, People's Republic of China.
Źródło:
Scientific reports [Sci Rep] 2020 Oct 07; Vol. 10 (1), pp. 16705. Date of Electronic Publication: 2020 Oct 07.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Insect Vectors*
Flea Infestations/*parasitology
Plague/*parasitology
Rodent Diseases/*parasitology
Animals ; China/epidemiology ; Family Characteristics ; Flea Infestations/epidemiology ; Mammals ; Plague/epidemiology ; Prevalence ; Rodent Diseases/epidemiology ; Siphonaptera
References:
Gallizzi, K., Alloitteau, O., Harrang, E. & Richner, H. Fleas, parental care, and transgenerational effects on tick load in the great tit. Behav. Ecol. 19, 1225–1234. https://doi.org/10.1093/beheco/arn083 (2008). (PMID: 10.1093/beheco/arn083)
Gage, K. L. Factors affecting the spread and maintenance of plague. Adv. Exp. Med. Biol. 954, 79–94. https://doi.org/10.1007/978-1-4614-3561-7_11 (2012). (PMID: 10.1007/978-1-4614-3561-7_1122782750)
Yin, J. X. et al. Human plague outbreak in two villages, Yunnan Province, China, 2005. Southeast Asian J. Trop. Med. Public Health 38, 1115–1119 (2007). (PMID: 18613555)
Cai, W. F., Zhang, F. X. & Wang, G. L. Structure and community diversity of small mammals in plague natural focus of Yulong County and Gucheng District. Chin. J. Control Endem. Dis. 30, 333–335 (2015).
Stenseth, N. C. et al. Plague: past, present, and future. PLoS Med. 5, e3. https://doi.org/10.1371/journal.pmed.0050003 (2008). (PMID: 10.1371/journal.pmed.0050003181989392194748)
Liang, X. C. & Wang, D. S. Analysis of epidemic situation of Marmota himalayana plague natural focus in Gansu Provence. Bull. Dis. Control Prev. 26, 38–48 (2011).
Bai, L. Q., Wang, J. J. & Si, X. Y. Overview of the survelliance of rodent populations from 2001 to 2011 in Inner Mongolia. Inner Mongolia Med. 46, 826–829 (2014).
Yin, J. X. et al. Predictors for presence and abundance of small mammals in households of villages endemic for commensal rodent plague in Yunnan Province, China. BMC Ecol. 8, 18. https://doi.org/10.1186/1472-6785-8-18 (2008). (PMID: 10.1186/1472-6785-8-18190681392630958)
Li, J. Y., Zhao, W. H., Dong, X. Q., Liang, Y. & Hong, M. Analysis on the current status of plague epidemics for Rattus flavipectus plague natural foci in Yunnan province. Chin. J. Endemiol. 25, 654–657 (2006).
Yang, C. G., Zhao, W. H. & Dong, X. Q. An analysis for epidemiological character and intensity of commensal rodent plague in Yunnan. Chin. J. Vector Biol. Control 18, 226–229 (2007).
Otranto, D. et al. Season-long control of flea and tick infestations in a population of cats in the Aeolian archipelago using a collar containing 10% imidacloprid and 45% flumethrin. Vet. Parasitol. 248, 80–83. https://doi.org/10.1016/j.vetpar.2017.10.023 (2017). (PMID: 10.1016/j.vetpar.2017.10.02329173546)
Lawrence, A. L. et al. Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe. Vet. Parasitol. 210, 215–223. https://doi.org/10.1016/j.vetpar.2015.03.029 (2015). (PMID: 10.1016/j.vetpar.2015.03.02925899079)
Krasnov, B. R. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology (Cambridge University Press, Cambridge, UK, 2008). (PMID: 10.1017/CBO9780511542688)
Giorgi, M. S., Arlettaz, R., Christe, P. & Vogel, P. The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proc. Biol. Sci. 268, 2071–2075. https://doi.org/10.1098/rspb.2001.1686 (2001). (PMID: 10.1098/rspb.2001.1686115710551088850)
Sánchez, S. & Gómez, M. S. Xenopsylla spp. (Siphonaptera: Pulicidae) in murid rodents from the Canary Islands: an update. Parasite 19, 423–426. https://doi.org/10.1051/parasite/2012194423 (2012). (PMID: 10.1051/parasite/2012194423231935283671453)
Rouault, E. et al. Imaging visceral leishmaniasis in real time with golden hamster model: monitoring the parasite burden and hamster transcripts to further characterize the immunological responses of the host. Parasitol. Int. 66, 933–939. https://doi.org/10.1016/j.parint.2016.10.020 (2017). (PMID: 10.1016/j.parint.2016.10.02027794505)
Schmid-Hempe, P. & Ebert, D. On the evolutionary of specific immune deference. Trends Ecol. Evol. 18, 27–32 (2003). (PMID: 10.1016/S0169-5347(02)00013-7)
Khokhlova, I. S., Spinu, M., Krasnov, B. R. & Degen, A. A. Immune response to fleas in a wild desert rodent: effect of parasite species, parasite burden, sex of host and host parasitological experience. J. Exp. Biol. 207, 2725–2733. https://doi.org/10.1242/jeb.01090 (2004). (PMID: 10.1242/jeb.0109015235001)
Lorange, E. A., Race, B. L., Sebbane, F. & Hinnebusch, B. J. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J. Infect Dis. 191, 1907–1912. https://doi.org/10.1086/429931 (2005). (PMID: 10.1086/42993115871125)
Eisen, R. J. et al. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. USA 103, 15380–15385. https://doi.org/10.1073/pnas.0606831103 (2006). (PMID: 10.1073/pnas.060683110317032761)
Poulin, R. Evolutionary Ecology of Parasites: From Individuals to Communities (Princeton Univ. Press, Princeton, 2007).
Poulin, R. Relative infection levels and taxonomic distances among the host species used by a parasite: insights into parasite specialization. Parasitology 130, 109–115 (2005). (PMID: 10.1017/S0031182004006304)
Wu, A. G., Li, T. Y., Feng, J. M. & Dong, X. Q. Study on the epidemiological significance related to community-structural difference of the rat plague host and vectors in Western Yunnan, China. Zhonghua liuxingbingxue zazhi 29, 346–350 (2008). (PMID: 18843991)
Yin, J. X. et al. Predictors for abundance of host flea and floor flea in households of villages with endemic commensal rodent plague, Yunnan Province, China. PLoS Negl. Trop. Dis. 5, e997. https://doi.org/10.1371/journal.pntd.0000997 (2011). (PMID: 10.1371/journal.pntd.0000997214683063066137)
Krasnov, B. R. et al. Host specificity and foraging efficiency in blood-sucking parasite: feeding patterns of the flea Parapulex chephrenis on two species of desert rodents. Parasitol. Res. 90, 393–399. https://doi.org/10.1007/s00436-003-0873-y (2003). (PMID: 10.1007/s00436-003-0873-y12739133)
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. & Poulin, R. Relationships between parasite abundance and the taxonomic distance among a parasite’s host species: an example with fleas parasitic on small mammals. Int. J. Parasitol. 34, 1289–1297. https://doi.org/10.1016/j.ijpara.2004.08.003 (2004). (PMID: 10.1016/j.ijpara.2004.08.00315491591)
Khokhlova, I. S., Fielden, L. J., Degen, A. A. & Krasnov, B. R. Digesting blood of an auxiliary host in fleas: effect of phylogenetic distance from a principal host. J. Exp. Biol. 215, 1259–1265. https://doi.org/10.1242/jeb.066878 (2012). (PMID: 10.1242/jeb.06687822442362)
Krasnov, B. R., Khokhlova, I. S. & Shenbrot, G. I. Density-dependent host selection in ectoparasites: an application of isodar theory to fleas parasitizing rodents. Oecologia 134, 365–372. https://doi.org/10.1007/s00442-002-1122-2 (2003). (PMID: 10.1007/s00442-002-1122-212647144)
Gruver, A. L., Hudson, L. L. & Sempowski, G. D. Immunosenescence of ageing. J. Pathol. 211, 144–156. https://doi.org/10.1002/path.2104 (2007). (PMID: 10.1002/path.2104172009461931833)
Body, G. et al. Population density and phenotypic attributes influence the level of nematode parasitism in roe deer. Oecologia 167, 635–646. https://doi.org/10.1007/s00442-011-2018-9 (2011). (PMID: 10.1007/s00442-011-2018-921607671)
Liberman, V., Khokhlova, I. S., Degen, A. A. & Krasnov, B. R. Reproductive consequences of host age in a desert flea. Parasitology 140, 461–470. https://doi.org/10.1017/s0031182012001904 (2013). (PMID: 10.1017/s003118201200190423253937)
Liberman, V., Khokhlova, I. S., Degen, A. A. & Krasnov, B. R. The effect of host age on feeding performance of fleas. Parasitology 138, 1154–1163. https://doi.org/10.1017/s0031182011000758 (2011). (PMID: 10.1017/s003118201100075821767433)
Hayward, A. D., Wilson, A. J., Pilkington, J. G., Pemberton, J. M. & Kruuk, L. E. Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc. Biol. Sci. 276, 3477–3485. https://doi.org/10.1098/rspb.2009.0906 (2009). (PMID: 10.1098/rspb.2009.0906195869472817194)
Clutton-Brock, T. H. & Isvaran, K. Sex differences in ageing in natural populations of vertebrates. Proc. Biol. Sci. 274, 3097–3104. https://doi.org/10.1098/rspb.2007.1138 (2007). (PMID: 10.1098/rspb.2007.1138179399882293943)
Fichet-Calvet, E., Wang, J., Jomaa, I., Ben Ismail, R. & Ashford, R. W. Patterns of the tapeworm Raillietina trapezoides infection in the fat sand rat Psammomys obesus in Tunisia: season, climatic conditions, host age and crowding effects. Parasitology 126, 481–492 (2003). (PMID: 10.1017/S0031182003003056)
Krasnov, B. R., Stanko, M. & Morand, S. Age-dependent flea (Siphonaptera) parasitism in rodents: a host’s life history matters. J. Parasitol. 92, 242–248. https://doi.org/10.1645/ge-637r1.1 (2006). (PMID: 10.1645/ge-637r1.116729679)
Alarcos, A. J. & Timi, J. T. Parasite communities in three sympatric flounder species (Pleuronectiformes: Paralichthyidae): similar ecological filters driving toward repeatable assemblages. Parasitol. Res. 110, 2155–2166. https://doi.org/10.1007/s00436-011-2741-5 (2012). (PMID: 10.1007/s00436-011-2741-522167375)
Johansen, C. E., Lydersen, C., Aspholm, P. E., Haug, T. & Kovacs, K. M. Helminth parasites in ringed seals (Pusa hispida) from Svalbard, Norway with special emphasis on nematodes: variation with age, sex, diet, and location of host. J. Parasitol. 96, 946–953. https://doi.org/10.1645/ge-1685.1 (2010). (PMID: 10.1645/ge-1685.120950103)
Praet, N. et al. Age-related infection and transmission patterns of human cysticercosis. Int. J. Parasitol. 40, 85–90. https://doi.org/10.1016/j.ijpara.2009.07.007 (2010). (PMID: 10.1016/j.ijpara.2009.07.00719683531)
Khokhlova, I. S., Serobyan, V., Degen, A. A. & Krasnov, B. R. Host gender and offspring quality in a flea parasitic on a rodent. J. Exp. Biol. 213, 3299–3304. https://doi.org/10.1242/jeb.046565 (2010). (PMID: 10.1242/jeb.04656520833922)
Khokhlova, I. S., Serobyan, V., Krasnov, B. R. & Degen, A. A. Is the feeding and reproductive performance of the flea, Xenopsylla ramesis, affected by the gender of its rodent host, Meriones crassus?. J. Exp. Biol. 212, 1429–1435. https://doi.org/10.1242/jeb.029389 (2009). (PMID: 10.1242/jeb.02938919411535)
Patterson, J. E., Neuhaus, P., Kutz, S. J. & Ruckstuhl, K. E. Patterns of ectoparasitism in North American red squirrels (Tamiasciurus hudsonicus): sex-biases, seasonality, age, and effects on male body condition. Int. J. Parasitol. Parasites Wildl. 4, 301–306. https://doi.org/10.1016/j.ijppaw.2015.05.002 (2015). (PMID: 10.1016/j.ijppaw.2015.05.002262366314501535)
Krasnov, B. R., Morand, S., Hawlena, H., Khokhlova, I. S. & Shenbrot, G. I. Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146, 209–217. https://doi.org/10.1007/s00442-005-0189-y (2005). (PMID: 10.1007/s00442-005-0189-y16025350)
Hawlena, H., Khokhlova, I. S., Abramsky, Z. & Krasnov, B. R. Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology 133, 187–193. https://doi.org/10.1017/s0031182006000308 (2006). (PMID: 10.1017/s003118200600030816677443)
Feng, J. M. & Xu, C. D. Geographical distribution patterns of zonal plant community species diversity in Western Yunnan, China. Chin. J. Ecol. 28, 595–600 (2009).
Zheng, Z. M., Jiang, Z. K. & Chen, A. G. The Glires (Shanghai Jiaotong University Press, Shanghai, 2008).
Xie, B. Q. & Zeng, J. F. The Siphonaptera of Yunnan (Yunnan Science and Technology Press, Kunming, 2000).
Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997). (PMID: 10.2307/3284227)
Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).
Baughman, A. L. Mixture model framework facilitates understanding of zero-inflated and hurdle models for count data. J. Biopharm. Stat. 17, 943–946. https://doi.org/10.1080/10543400701514098 (2007). (PMID: 10.1080/1054340070151409817885875)
Yin, J. X. & Dong, X. Q. Application of hurdle model in identifying predictors for flea abundance on rats. Endem. Dis. Bull. 25, 1–4 (2010).
Yin, J. X., Zhong, Y. H., Du, C. H., Dong, X. Q. & Yang, S. H. Predictors for abundance of Rattus tanezumi in households of commensal rodent plague foci. Zhonghua liuxingbingxue zazhi 34, 157–159 (2013). (PMID: 23751472)
Grant Information:
No. 81860565 International the National Natural Science Foundation of China; No.ZKPY2019201 International The Innovation Team of Natural Focal Diseases Epidemiology in Dali University
Entry Date(s):
Date Created: 20201008 Date Completed: 20201204 Latest Revision: 20211007
Update Code:
20240105
PubMed Central ID:
PMC7542161
DOI:
10.1038/s41598-020-73690-0
PMID:
33028907
Czasopismo naukowe
The Yunnan province has one of the most serious outbreaks of the plague epidemic in China. Small mammals and fleas are risk factors for the occurrence of plague in commensal plague foci. Understanding the relationship between fleas and small mammals will help control fleas and prevent the onset of the plague. Four hundred and twenty-one small mammals, belonging to 9 species, were captured. Of these, 170 small mammals (40.4%) were found infested with fleas. A total of 992 parasitic fleas (including 5 species) were collected. The number of Leptopsylla segnis and Xenopsylla cheopis accounted for 91.03% (903/992). The final multiple hurdle negative binomial regression model showed that when compared with Rattus tanezumi, the probability of flea infestation with Mus musculus as well as other host species decreased by 58% and 99%, respectively, while the number of flea infestations of the other host species increased by 4.71 folds. The probability of flea prevalence in adult hosts increased by 74%, while the number of fleas decreased by 76%. The number of flea infestations in small male mammals increased by 62%. The number of fleas in small mammals weighing more than 59 g has been multiplied by about 4. R. tanezumi is the predominant species in households in the west Yunnan province, while L.segnis and X. cheopis were dominant parasitic fleas. There is a strong relationship between the abundance of fleas and the characteristics of small mammals (e.g. Species, age, sex, and body weight).
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies