Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Targeted therapy for metastatic renal cell carcinoma.

Tytuł:
Targeted therapy for metastatic renal cell carcinoma.
Autorzy:
Hofmann F; Department of Urology, Sunderby Sjukhus, Umeå University, Luleå, Sweden.
Hwang EC; Department of Urology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun, Korea, South.
Lam TB; Academic Urology Unit, University of Aberdeen, Aberdeen, UK.
Bex A; Department of Urology and UCL Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust, London, UK.
Yuan Y; Department of Medicine, Division of Gastroenterology, McMaster University, Hamilton, Canada.
Marconi LS; Department of Urology and Renal Transplantation, Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal.
Ljungberg B; Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden.
Źródło:
The Cochrane database of systematic reviews [Cochrane Database Syst Rev] 2020 Oct 14; Vol. 10. Cochrane AN: CD012796. Date of Electronic Publication: 2020 Oct 14.
Typ publikacji:
Journal Article; Meta-Analysis; Research Support, Non-U.S. Gov't; Systematic Review
Język:
English
Imprint Name(s):
Publication: 2004- : Chichester, West Sussex, England : Wiley
Original Publication: Oxford, U.K. ; Vista, CA : Update Software,
MeSH Terms:
Antineoplastic Agents/*therapeutic use
Carcinoma, Renal Cell/*drug therapy
Kidney Neoplasms/*drug therapy
Protein Kinase Inhibitors/*therapeutic use
Adult ; Antibodies, Monoclonal, Humanized/adverse effects ; Antibodies, Monoclonal, Humanized/therapeutic use ; Antineoplastic Agents/adverse effects ; Antineoplastic Agents, Immunological/therapeutic use ; Axitinib/adverse effects ; Axitinib/therapeutic use ; Bevacizumab/adverse effects ; Bevacizumab/therapeutic use ; Bias ; Carcinoma, Renal Cell/mortality ; Everolimus/adverse effects ; Everolimus/therapeutic use ; Humans ; Indazoles ; Ipilimumab/adverse effects ; Ipilimumab/therapeutic use ; Kidney Neoplasms/mortality ; Kidney Neoplasms/pathology ; Phenylurea Compounds/adverse effects ; Phenylurea Compounds/therapeutic use ; Progression-Free Survival ; Protein Kinase Inhibitors/adverse effects ; Pyrimidines/adverse effects ; Pyrimidines/therapeutic use ; Quality of Life ; Quinolines/adverse effects ; Quinolines/therapeutic use ; Randomized Controlled Trials as Topic ; Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors ; Sirolimus/adverse effects ; Sirolimus/analogs & derivatives ; Sirolimus/therapeutic use ; Sorafenib/adverse effects ; Sorafenib/therapeutic use ; Sulfonamides/adverse effects ; Sulfonamides/therapeutic use ; Sunitinib/adverse effects ; Sunitinib/therapeutic use
References:
Ann Oncol. 2016 May;27(5):880-6. (PMID: 26802156)
Cochrane Database Syst Rev. 2020 Oct 14;10:CD012796. (PMID: 33058158)
J Clin Oncol. 2005 Jun 1;23(16):3726-32. (PMID: 15923569)
J Clin Oncol. 2012 Sep 20;30(27):3402-7. (PMID: 22891270)
Cancer. 2008 Oct 1;113(7):1552-8. (PMID: 18720362)
Lancet Oncol. 2015 Nov;16(15):1473-1482. (PMID: 26482279)
Eur J Cancer. 2009 Jan;45(2):228-47. (PMID: 19097774)
Stat Med. 2002 Jun 15;21(11):1539-58. (PMID: 12111919)
J Clin Oncol. 2014 Mar 10;32(8):760-7. (PMID: 24297950)
N Engl J Med. 2015 Nov 5;373(19):1814-23. (PMID: 26406150)
N Engl J Med. 2015 Nov 5;373(19):1803-13. (PMID: 26406148)
Cancer. 2010 Jan 1;116(1):57-65. (PMID: 19862815)
Eur J Cancer. 2012 Mar;48(4):527-37. (PMID: 22285180)
Target Oncol. 2010 Jun;5(2):75-84. (PMID: 20645016)
N Engl J Med. 2013 Aug 22;369(8):722-31. (PMID: 23964934)
Eur Urol. 2016 May;69(5):866-74. (PMID: 26626617)
Ann Oncol. 2017 Apr 1;28(4):804-808. (PMID: 28049139)
Angiogenesis. 2017 May;20(2):205-215. (PMID: 28401381)
BJU Int. 2020 Jul;126(1):73-82. (PMID: 32233107)
J Clin Oncol. 2010 Feb 20;28(6):1061-8. (PMID: 20100962)
Lancet. 2007 Dec 22;370(9605):2103-11. (PMID: 18156031)
Am J Surg Pathol. 2013 Oct;37(10):1469-89. (PMID: 24025519)
J Clin Oncol. 2007 Oct 10;25(29):4536-41. (PMID: 17876014)
JAMA Oncol. 2017 Apr 01;3(4):501-508. (PMID: 27918762)
Cancer Cell. 2008 Dec 9;14(6):423-4. (PMID: 19061830)
J Clin Oncol. 2006 Jan 10;24(2):213-6. (PMID: 16365177)
J Clin Oncol. 2006 Jan 1;24(1):4-5. (PMID: 16314613)
Ann Oncol. 2008 Aug;19(8):1470-1476. (PMID: 18408224)
Urol Clin North Am. 2003 Aug;30(3):423-36. (PMID: 12953746)
Blood. 2005 Apr 1;105(7):2640-53. (PMID: 15618470)
Lancet Oncol. 2013 Dec;14(13):1287-94. (PMID: 24206640)
BMJ. 2008 Apr 26;336(7650):924-6. (PMID: 18436948)
J Clin Oncol. 2017 Feb 20;35(6):591-597. (PMID: 28199818)
J Clin Oncol. 2010 May 1;28(13):2144-50. (PMID: 20368553)
BJU Int. 2005 Sep;96(4):536-9. (PMID: 16104906)
Cochrane Database Syst Rev. 2008 Apr 16;(2):CD006017. (PMID: 18425931)
Cancer. 2012 Dec 15;118(24):6152-61. (PMID: 22692704)
Clin Cancer Res. 2009 Dec 15;15(24):7582-7592. (PMID: 19996202)
Lancet. 2019 Jun 15;393(10189):2404-2415. (PMID: 31079938)
Clin Cancer Res. 2016 Jul 1;22(13):3172-81. (PMID: 26851187)
Lancet Oncol. 2019 Feb;20(2):297-310. (PMID: 30658932)
J Urol. 2007 Nov;178(5):1901-5. (PMID: 17868728)
Eur J Cancer. 2013 Apr;49(6):1287-96. (PMID: 23321547)
Lancet Oncol. 2016 Mar;17(3):378-388. (PMID: 26794930)
N Engl J Med. 2014 May 1;370(18):1769-70. (PMID: 24785224)
Clin Genitourin Cancer. 2015 Feb;13(1):50-8. (PMID: 25163397)
Br J Cancer. 2010 Feb 16;102(4):658-64. (PMID: 20104222)
Clin Cancer Res. 2020 Jun 1;26(11):2506-2514. (PMID: 32127394)
N Engl J Med. 2019 Mar 21;380(12):1116-1127. (PMID: 30779529)
Pharmacoeconomics. 2010;28(7):577-84. (PMID: 20550223)
Eur Urol. 2003 Jun;43(6):670-9. (PMID: 12767369)
J Natl Cancer Inst. 2011 Apr 20;103(8):636-44. (PMID: 21422403)
J Clin Oncol. 2006 Feb 20;24(6):898-903. (PMID: 16484699)
Eur J Cancer. 2019 Jan;107:37-45. (PMID: 30529901)
Lancet Oncol. 2016 Nov;17(11):1599-1611. (PMID: 27720136)
J Clin Oncol. 2014 Mar 10;32(8):752-9. (PMID: 24297945)
N Engl J Med. 2018 Apr 05;378(14):1277-1290. (PMID: 29562145)
J Clin Oncol. 2009 Mar 10;27(8):1280-9. (PMID: 19171708)
J Clin Oncol. 2014 Sep 1;32(25):2765-72. (PMID: 25049330)
Eur Urol. 2018 Sep;74(3):309-321. (PMID: 29656851)
Eur J Cancer. 2012 Feb;48(3):311-23. (PMID: 21689927)
Cochrane Database Syst Rev. 2000;(3):CD001425. (PMID: 10908496)
Clin Cancer Res. 2004 Apr 15;10(8):2584-6. (PMID: 15102658)
J Clin Oncol. 2013 Oct 20;31(30):3791-9. (PMID: 24019545)
Lancet Oncol. 2013 Nov;14(12):1233-42. (PMID: 24140184)
BJU Int. 2011 Nov;108(10):1556-63. (PMID: 21952069)
Ann Oncol. 2015 Jul;26(7):1378-84. (PMID: 25851632)
Cancer. 2017 Dec 1;123(23):4566-4573. (PMID: 28832978)
Lancet Oncol. 2014 Mar;15(3):286-96. (PMID: 24556040)
Br J Cancer. 2015 Oct 20;113(8):1140-7. (PMID: 26448178)
Nature. 2004 Nov 18;432(7015):294-7. (PMID: 15549090)
Eur Urol. 2015 Nov;68(5):837-47. (PMID: 25952317)
N Engl J Med. 2007 Jan 11;356(2):115-24. (PMID: 17215529)
J Clin Oncol. 2008 Aug 1;26(22):3763-9. (PMID: 18669464)
J Clin Oncol. 2015 May 1;33(13):1430-7. (PMID: 25452452)
Cochrane Database Syst Rev. 2015 Apr 20;4:ED000098. (PMID: 25904511)
N Engl J Med. 2003 Jul 31;349(5):427-34. (PMID: 12890841)
J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):137-159. (PMID: 19381330)
N Engl J Med. 1998 Apr 30;338(18):1265-71. (PMID: 9562580)
BJU Int. 2005 Mar;95 Suppl 2:2-7. (PMID: 15720328)
J Clin Oncol. 2012 May 10;30(14):1678-85. (PMID: 22493422)
Nat Rev Cancer. 2008 Jun;8(6):473-80. (PMID: 18469827)
N Engl J Med. 2019 Mar 21;380(12):1103-1115. (PMID: 30779531)
Br J Urol. 1989 Feb;63(2):128-31. (PMID: 2702395)
Cochrane Database Syst Rev. 2017 May 15;5:CD011673. (PMID: 28504837)
J Clin Oncol. 2005 Aug 10;23(23):5386-403. (PMID: 15983388)
Clin Genitourin Cancer. 2006 Mar;4(4):296-8. (PMID: 16729915)
J Clin Oncol. 2008 Nov 20;26(33):5422-8. (PMID: 18936475)
Eur Urol. 2013 Feb;63(2):254-61. (PMID: 22964169)
BMJ. 2011 Feb 10;342:d549. (PMID: 21310794)
J Clin Oncol. 2003 Oct 1;21(19):3683-95. (PMID: 14512401)
Clin Cancer Res. 2015 Aug 1;21(15):3420-7. (PMID: 25788492)
J Clin Oncol. 2005 Feb 10;23(5):1028-43. (PMID: 15534359)
BMJ. 2012 Jan 03;344:d7202. (PMID: 22214754)
J Clin Oncol. 2006 Jun 1;24(16):2505-12. (PMID: 16636341)
Ann Oncol. 2015 Nov;26(11):2300-5. (PMID: 26347107)
Target Oncol. 2016 Oct;11(5):643-653. (PMID: 27154357)
Clin Cancer Res. 2007 Nov 15;13(22 Pt 1):6689-95. (PMID: 18006769)
Med Oncol. 2009;26(2):202-9. (PMID: 19229667)
BMJ. 2008 Mar 15;336(7644):601-5. (PMID: 18316340)
Lancet. 2008 Aug 9;372(9637):449-56. (PMID: 18653228)
Ann Oncol. 2019 May 1;30(5):706-720. (PMID: 30788497)
J Clin Oncol. 2010 May 1;28(13):2137-43. (PMID: 20368558)
Eur Urol. 2016 Mar;69(3):450-6. (PMID: 26364551)
N Engl J Med. 2007 May 31;356(22):2271-81. (PMID: 17538086)
Eur Urol. 2017 Mar;71(3):426-436. (PMID: 27939075)
Lancet Oncol. 2011 Jul;12(7):673-80. (PMID: 21664867)
Lancet. 2011 Dec 3;378(9807):1931-9. (PMID: 22056247)
J Clin Oncol. 2015 Jul 20;33(21):2384-91. (PMID: 26077237)
Br J Cancer. 2011 Apr 12;104(8):1256-61. (PMID: 21448165)
CA Cancer J Clin. 2018 Nov;68(6):394-424. (PMID: 30207593)
Nat Med. 2018 Jun;24(6):749-757. (PMID: 29867230)
N Engl J Med. 2007 Jan 11;356(2):125-34. (PMID: 17215530)
J Clin Oncol. 2012 Apr 20;30(12):1371-7. (PMID: 22430274)
J Clin Oncol. 2002 Jan 1;20(1):289-96. (PMID: 11773181)
Ann Oncol. 2009 Nov;20(11):1803-12. (PMID: 19549706)
Lancet Oncol. 2019 Oct;20(10):1370-1385. (PMID: 31427204)
J Clin Oncol. 2008 May 10;26(14):2285-91. (PMID: 18467719)
J Clin Oncol. 2004 Mar 1;22(5):909-18. (PMID: 14990647)
J Oncol Pract. 2009 Mar;5(2):66-70. (PMID: 20856722)
Ann Oncol. 2017 Jun 01;28(6):1339-1345. (PMID: 28327953)
Cancer. 2010 Jan 15;116(2):347-54. (PMID: 19921736)
Eur Urol. 2019 Jan;75(1):100-110. (PMID: 30327274)
J Clin Epidemiol. 2011 Apr;64(4):383-94. (PMID: 21195583)
J Clin Oncol. 2009 Aug 1;27(22):3584-90. (PMID: 19487381)
BMJ. 2011 Jul 22;343:d4002. (PMID: 21784880)
BMJ. 2003 Sep 6;327(7414):557-60. (PMID: 12958120)
Molecular Sequence:
ClinicalTrials.gov NCT03141177; NCT03937219; NCT02959554; NCT02811861
Substance Nomenclature:
0 (Antibodies, Monoclonal, Humanized)
0 (Antineoplastic Agents)
0 (Antineoplastic Agents, Immunological)
0 (Indazoles)
0 (Ipilimumab)
0 (Phenylurea Compounds)
0 (Protein Kinase Inhibitors)
0 (Pyrimidines)
0 (Quinolines)
0 (Sulfonamides)
172030934T (tivozanib)
2S9ZZM9Q9V (Bevacizumab)
624KN6GM2T (temsirolimus)
7RN5DR86CK (pazopanib)
9HW64Q8G6G (Everolimus)
9ZOQ3TZI87 (Sorafenib)
C9LVQ0YUXG (Axitinib)
DPT0O3T46P (pembrolizumab)
EC 2.7.10.1 (Receptors, Vascular Endothelial Growth Factor)
KXG2PJ551I (avelumab)
V99T50803M (Sunitinib)
W36ZG6FT64 (Sirolimus)
SCR Disease Name:
Clear-cell metastatic renal cell carcinoma
Entry Date(s):
Date Created: 20201015 Date Completed: 20201113 Latest Revision: 20240227
Update Code:
20240227
PubMed Central ID:
PMC8094280
DOI:
10.1002/14651858.CD012796.pub2
PMID:
33058158
Czasopismo naukowe
Background: Several comparative randomised controlled trials (RCTs) have been performed including combinations of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors since the publication of a Cochrane Review on targeted therapy for metastatic renal cell carcinoma (mRCC) in 2008. This review represents an update of that original review.
Objectives: To assess the effects of targeted therapies for clear cell mRCC in patients naïve to systemic therapy.
Search Methods: We performed a comprehensive search with no restrictions on language or publication status. The date of the latest search was 18 June 2020.
Selection Criteria: We included randomised controlled trials, recruiting patients with clear cell mRCC naïve to previous systemic treatment. The index intervention was any TKI-based targeted therapy.
Data Collection and Analysis: Two review authors independently assessed the included studies and extracted data for the primary outcomes: progression-free survival (PFS), overall survival (OS) and serious adverse events (SAEs); and the secondary outcomes: health-related quality of life (QoL), response rate and minor adverse events (AEs). We performed statistical analyses using a random-effects model and rated the certainty of evidence according to the GRADE approach.
Main Results: We included 18 RCTs reporting on 11,590 participants randomised across 18 comparisons. This abstract focuses on the primary outcomes of select comparisons. 1. Pazopanib versus sunitinib Pazopanib may result in little to no difference in PFS as compared to sunitinib (hazard ratio (HR) 1.05, 95% confidence interval (CI) 0.90 to 1.23; 1 study, 1110 participants; low-certainty evidence). Based on the control event risk of 420 per 1000 in this trial at 12 months, this corresponds to 18 fewer participants experiencing PFS (95% CI 76 fewer to 38 more) per 1000 participants. Pazopanib may result in little to no difference in OS compared to sunitinib (HR 0.92, 95% CI 0.80 to 1.06; 1 study, 1110 participants; low-certainty evidence). Based on the control event risk of 550 per 1000 in this trial at 12 months, this corresponds to 27 more OSs (95% CI 19 fewer to 70 more) per 1000 participants. Pazopanib may result in little to no difference in SAEs as compared to sunitinib (risk ratio (RR) 1.01, 95% CI 0.94 to 1.09; 1 study, 1102 participants; low-certainty evidence). Based on the control event risk of 734 per 1000 in this trial, this corresponds to 7 more participants experiencing SAEs (95% CI 44 fewer to 66 more) per 1000 participants. 2. Sunitinib versus avelumab and axitinib Sunitinib probably reduces PFS as compared to avelumab plus axitinib (HR 1.45, 95% CI 1.17 to 1.80; 1 study, 886 participants; moderate-certainty evidence). Based on the control event risk of 550 per 1000 in this trial at 12 months, this corresponds to 130 fewer participants experiencing PFS (95% CI 209 fewer to 53 fewer) per 1000 participants. Sunitinib may result in little to no difference in OS (HR 1.28, 95% CI 0.92 to 1.79; 1 study, 886 participants; low-certainty evidence). Based on the control event risk of 890 per 1000 in this trial at 12 months, this would result in 29 fewer OSs (95% CI 78 fewer to 8 more) per 1000 participants. Sunitinib may result in little to no difference in SAEs (RR 1.01, 95% CI 0.93 to 1.10; 1 study, 873 participants; low-certainty evidence). Based on the control event risk of 705 per 1000 in this trial, this corresponds to 7 more SAEs (95% CI 49 fewer to 71 more) per 1000 participants.  3. Sunitinib versus pembrolizumab and axitinib Sunitinib probably reduces PFS as compared to pembrolizumab plus axitinib (HR 1.45, 95% CI 1.19 to 1.76; 1 study, 861 participants; moderate-certainty evidence). Based on the control event risk of 590 per 1000 in this trial at 12 months, this corresponds to 125 fewer participants experiencing PFS (95% CI 195 fewer to 56 fewer) per 1000 participants. Sunitinib probably reduces OS (HR 1.90, 95% CI 1.36 to 2.65; 1 study, 861 participants; moderate-certainty evidence). Based on the control event risk of 880 per 1000 in this trial at 12 months, this would result in 96 fewer OSs (95% CI 167 fewer to 40 fewer) per 1000 participants. Sunitinib may reduce SAEs as compared to pembrolizumab plus axitinib (RR 0.90, 95% CI 0.81 to 1.02; 1 study, 854 participants; low-certainty evidence) although the CI includes the possibility of no effect. Based on the control event risk of 604 per 1000 in this trial, this corresponds to 60 fewer SAEs (95% CI 115 fewer to 12 more) per 1000 participants.  4. Sunitinib versus nivolumab and ipilimumab Sunitinib may reduce PFS as compared to nivolumab plus ipilimumab (HR 1.30, 95% CI 1.11 to 1.52; 1 study, 847 participants; low-certainty evidence). Based on the control event risk of 280 per 1000 in this trial at 30 months' follow-up, this corresponds to 89 fewer PFSs (95% CI 136 fewer to 37 fewer) per 1000 participants. Sunitinib reduces OS (HR 1.52, 95% CI 1.23 to 1.89; 1 study, 847 participants; high-certainty evidence). Based on the control event risk 600 per 1000 in this trial at 30 months, this would result in 140 fewer OSs (95% CI 219 fewer to 67 fewer) per 1000 participants. Sunitinib probably increases SAEs (RR 1.37, 95% CI 1.22 to 1.53; 1 study, 1082 participants; moderate-certainty evidence). Based on the control event risk of 457 per 1000 in this trial, this corresponds to 169 more SAEs (95% CI 101 more to 242 more) per 1000 participants.
Authors' Conclusions: Based on the low to high certainty of evidence, several combinations of immune checkpoint inhibitors appear to be superior to single-agent targeted therapy in terms of PFS and OS, and with a favourable AE profile. Some single-agent targeted therapies demonstrated a similar or improved oncological outcome compared to others; minor differences were observed for AE within this group. The certainty of evidence was variable ranging from high to very low and all comparisons were based on single trials.
(Copyright © 2020 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies