Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

N,N'-Diphenylthiourea electrochemical sensor for the detection of l-glutamate and Aspartate in beef.

Tytuł:
N,N'-Diphenylthiourea electrochemical sensor for the detection of l-glutamate and Aspartate in beef.
Autorzy:
Wang X; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Hu F; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Zhu L; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Liu D; College of Food Science and Technology, Bohai University, Jinzhou, P. R. China.
Dong Y; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Wang C; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Wu D; College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
Źródło:
Journal of food science [J Food Sci] 2020 Nov; Vol. 85 (11), pp. 3852-3857. Date of Electronic Publication: 2020 Oct 16.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
MeSH Terms:
Aspartic Acid/*analysis
Electrochemical Techniques/*methods
Glutamic Acid/*analysis
Red Meat/*analysis
Thiourea/*analogs & derivatives
Animals ; Cattle ; Reproducibility of Results ; Thiourea/analysis
References:
Ahn, S. R., An, J. H., Jang, I. H., Na, W., Yang, H., & Park, T. H. (2018). High-performance bioelectronic tongue using ligand binding domain T1R1 VFT for umami taste detection. Biosensors and Bioelectronics, 117, 628-636.
Akl, Z. F. (2017). Electrochemical selective determination of uranyl ions using PVC membrane sensor. Electroanalysis, 29(5), 1459-1468.
Beitollahi, H., & Garkani Nejad, F. (2016). Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis, 28(9), 2237-2244.
Beitollahi, H., & Sheikhshoaie, I. (2012). Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Materials Science and Engineering: C, 32, 375-380.
Belk, K. E., George, M. H., Tatum, J. D., Hilton, G. G., Miller, R. K., Koohmaraie, M., & Smith, G. C. (2001). Evaluation of the Tendertec beef grading instrument to predict the tenderness of steaks from beef carcasses. Journal of Animal Science, 79(3), 688-697.
Banović, M., Grunert, K. G., Barreira, M. M., & Fontes, M. A. (2009). Beef quality perception at the point of purchase: A study from Portugal. Food Quality and Preference, 20(4), 335-342.
Das, S., Guha, S., & Banerjee, A. (2011). 2-(2-Pyridyl) benzimidazole based Co(II) complex as an efficient fluorescent probe for trace level determination of aspartic and glutamic acid in aqueous solution: A displacement approach. Organic & Biomolecular Chemistry, 9(20), 7097-7104.
Drake, S. L., Carunchia Whetstine, M. E., Drake, M. A., Courtney, P., Fligner, K., Jenkins, J., & Pruitt, C. (2007). Sources of umami taste in Cheddar and Swiss cheeses. Journal of Food Science, 72(6), S360-S366.
Elyasi, M., Khalilzadeh, M. A., & Karimi-Maleh, H. (2013). High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chemistry, 141(4), 4311-4317.
Ganjali, M.R., Salimi, H., Tajik, S., Beitollahi, H., Rezapour, M., & Larijani, B. (2017). Application of . International Journal of Electrochemical Science, 12, 5243-5253.
Guan, H., Zhou, P., & Zhou, X. (2008). Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene-gold nanoparticles composite. Talanta, 77, 319-324.
Gupta, V. K., Jain, S., & Chandra, S. (2003). Chemical sensor for lanthanum (III) determination using aza-crown as ionophore in poly (vinyl chloride) matrix. Analytica Chimica Acta, 486(2), 199-207.
Han, Y., Wang, X., Cai, Y., Li, Z., Zhao, L., Wang, H., & Zhu, L. (2017). Sensor-array-based evaluation and grading of beef taste quality. Meat Science, 129, 38-42.
Jeong, J. Y., Kim, G. D., Yang, H. S., & Joo, S. T. (2011). Effect of freeze-thaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Research International, 44(10), 3222-3228.
Kang, S. M., Kang, G., Seong, P., Kim, Y., Park, B., & Cho, S. (2013). Effect of cooking condition on the water-soluble flavor precursors in various beef muscles from Hanwoo (Korean cattle). Korean Journal for Food Science of Animal Resources, 33(6), 752-756.
Khalilzadeh, M. A., Tajik, S., & Beitollahi, H. (2020). Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (): Investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Industrial & Engineering Chemistry Research, 59(10), 4219-4228.
Kurihara, K. (2015). Umami the fifth basic taste: History of studies on receptor mechanisms and role as a food flavor. Biomed Research International, 2015(6), 189402.
Moghaddam, H. M., Beitollahi, H., & Tajik, S. (2014). Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environmental Monitoring & Assessment, 186(11), 7431-7441.
Mullen, A. M., Stoeva, S., Laib, K., Gruebler, G., Voelter, W., & Troy, D. J. (2000). Preliminary analysis of amino acids at various locations along the M. longissimus dorsi in aged beef. Food Chemistry, 69(4), 461-465.
Nasomphan, W., Tangboriboonrat, P., & Tanapongpipat, S. (2017). Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate. Journal of Fluorescence, 24(1), 7-11.
Nayek, M., Mukherjee, A., & Seal, B. (1999). Study of a novel reaction between N, N′-diphenylthiourea and p-chloranil through a charge-transfer intermediate. Journal of the Chemical Society, Perkin Transactions, 2(10), 2219-2223.
Oh, M., Kim, E. K., Jeon, B. T., Tang, Y., Kim, M. S., Seong, H. J., & Moon, S. H. (2016). Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut. Meat Science, 119, 16-21.
Perry, D., Thompson, J. M., Hwang, I. H., Butchers, A., & Egan, A. F. (2001). Relationship between objective measurements and taste panel assessment of beef quality. Australian Journal of Experimental Agriculture, 41(7), 981-989.
Perez-Marin, L., Otazo-Sánchez, E., Macedo-Miranda, G., Avila-Perez, P., Chamaro, J. A., & Lopez-Valdivia, H. (2000). Mercury (II) ion-selective electrode. Study of 1, 3-diphenylthiourea as ionophore. Analyst, 125(10), 1787-1790.
Phat, C., Moon, B., & Lee, C. (2016). Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chemistry, 192, 1068-1077.
Ramanavicius, A., Ramanaviciene, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-Polypyrrole. Electrochimica Acta, 51(27), 6025-6037.
Sales, L. A., Rodrigues, L. M., Silva, D. R. G., Fontes, P. R., Torres, R.D., & Ramo, E. M. (2020). Effect of freezing/irradiation/thawing processes and subsequent aging on tenderness, color, and oxidative properties of beef. Meat Science, 163, 108078.
Shizuko, Y., & Kumiko, N. (2000). Umami and food palatability. Journal of Nutrition, 130(4), 921S-926S.
Su, P. G., & Peng, Y. T. (2014). Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sensors and Actuators B: Chemical, 193, 637-643.
Tajik, S., & Beitollahi, H. (2019). A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Analytical and Bioanalytical Chemistry Research, 6(1), 171-182.
Tajik, S., & Taher, M. (2011). A new method for microextraction of ultra trace quantities of gold in real samples using ultrasound-assisted emulsification of solidified floating organic drops. Microchimica Acta, 173(1-2), 249-257.
USDA. (1997). United States standards for grades of carcass beef. Washington, DC: AMS, USDA.
Wang, K., Xu, J. J., Tang, K. S., & Chen, H. Y. (2005). Solid-contact potentiometric sensor for ascorbic acid based on cobalt phthalocyanine nanoparticles as ionophore. Talanta, 67(4), 798-805.
Wu, R. J., Huang, Y. C., Yu, M. R., Lin, T. H., & Hung, S. L. (2008). Application of m-CNTs/NaClO4/Ppy to a fast response, room working temperature ethanol sensor. Sensors and Actuators B: Chemical, 134(1), 213-218.
Wu, X. M., & Qi, C. S. (2006). Thermal decomposition kinetics of complexes of rare earth with amino acid RE(Val)Cl3 center dot 6H2O (RE = Nd, Sm). Acta Physico-Chimica Sinica, 22(08), 942-946.
Grant Information:
2019-MS-006 Natural Science Foundation of Liaoning Province
Contributed Indexing:
Keywords: DPTU; aspartate; beef; electrochemical sensor; l-glutamate
Substance Nomenclature:
30KYC7MIAI (Aspartic Acid)
3KX376GY7L (Glutamic Acid)
9YCB5VR86Z (diphenylthiourea)
GYV9AM2QAG (Thiourea)
Entry Date(s):
Date Created: 20201017 Date Completed: 20210108 Latest Revision: 20210108
Update Code:
20240105
DOI:
10.1111/1750-3841.15494
PMID:
33067859
Czasopismo naukowe
This study was conducted to design an electrochemical sensor for detection of l-glutamate (L-Glu) and Aspartate (Asp), which contribute largely to the umami taste of beef. Using N, N'-diphenylthiourea (DPTU), polypyrrole (PPy), and polyvinyl chloride (PVC), a composite electrode (DPTU/PVC/PPy/Pt) was prepared for rapidly electrochemical detection of l-Glu and Asp. The surface morphology of the synthesized functionalized electrode was characterized by Field Emission Scanning Electron Microscopy (FESEM). Potentials of umami amino acids accounted for 97.8%, while six interferential amino acids existed. The linear correlation between the content of l-Glu and Asp in beef broth was studied under different treatment conditions. The sensor compared with an amino acid analyzer well detected the contents of l-Glu and Asp in beef broths, with a coefficient of 0.991 in Pearson correlation analysis and an accuracy of 88.9%. The proposed electrochemical sensor showed good concurrence with previously reported methods and was effectively employed for the quantification of l- Glu and Asp in beef. PRACTICAL APPLICATION: The sensor exhibits the good performance with high stability and high accuracy. And it is a potential sensing platform with good reproducibility, making the proposed method suitable and reliable for routine analysis of L-Glu and Asp in beef. This method was proved promising for quantitative detecting amino acids in beef.
(© 2020 Institute of Food Technologists®.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies