Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Multidimensional Anisotropic Architectures on Polymeric Microparticles.

Tytuł:
Multidimensional Anisotropic Architectures on Polymeric Microparticles.
Autorzy:
Agusil JP; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain.
Arjona MI; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain.; Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada, Av. de la Fuente Nueva s/n, Granada, 18071, Spain.
Duch M; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain.
Fusté N; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain.
Plaza JA; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/dels Tillers s/n, Campus UAB, Cerdanyola del Vallès, Barcelona, 08193, Spain.
Źródło:
Small (Weinheim an der Bergstrasse, Germany) [Small] 2020 Nov; Vol. 16 (46), pp. e2004691. Date of Electronic Publication: 2020 Oct 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
MeSH Terms:
Polymers*
Printing*
Anisotropy ; Printing, Three-Dimensional
References:
A. C. Misra, J. Lahann, Adv. Healthcare Mater. 2018, 7, 1701319.
D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, P. S. Doyle, Nat. Mater. 2006, 5, 365.
S. C. Glotzer, M. J. Solomon, Nat. Mater. 2007, 6, 557.
J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, P. S. Doyle, Nat. Mater. 2014, 13, 524.
H. Lee, J. Kim, H. Kim, J. Kim, S. Kwon, Nat. Mater. 2010, 9, 745.
Y. Alapan, B. Yigit, O. Beker, A. F. Demirörs, M. Sitti, Nat. Mater. 2019, 18, 1244.
A. Choi, K. D. Seo, D. W. Kim, B. C. Kim, D. S. Kim, Lab Chip 2017, 17, 591.
D. Y. Kim, S. H. Jin, S. G. Jeong, B. Lee, K. K. Kang, C. S. Lee, Sci. Rep. 2018, 8, 1.
Y. Zhao, Y. Cheng, L. Shang, J. Wang, Z. Xie, Z. Gu, Small 2015, 11, 151.
K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, Adv. Mater. 2012, 24, 1340.
P. Davoodi, F. Feng, Q. Xu, W. C. Yan, Y. W. Tong, M. P. Srinivasan, V. K. Sharma, C. H. Wang, J. Controlled Release 2015, 205, 70.
S. Rahmani, S. Saha, H. Durmaz, A. Donini, A. C. Misra, J. Yoon, J. Lahann, Angew. Chem., Int. Ed. 2014, 53, 2332.
R. Arppe, T. J. Sørensen, Nat. Rev. Chem. 2017, 1, 0031.
M. D. Neto, M. B. Oliveira, J. F. Mano, Trends Biotechnol. 2019, 37, 1011.
J. P. Agusil, N. Torras, M. Duch, J. Esteve, L. Pérez-García, J. Samitier, J. A. Plaza, Adv. Funct. Mater. 2017, 27, 1605912.
B. Yu, H. Cong, Q. Peng, C. Gu, Q. Tang, X. Xu, C. Tian, F. Zhai, Adv. Colloid Interface Sci. 2018, 256, 126.
Z. Wu, Y. Zheng, L. Lin, S. Mao, Z. Li, J.-M. Lin, Angew. Chem., Int. Ed. 2019, 58, 6316.
D. Qin, Y. Xia, G. M. Whitesides, Nat. Protoc. 2010, 5, 491.
F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin, Science 2008, 321, 1658.
R. Wilson, A. R. Cossins, D. G. Spiller, Angew. Chem. 2006, 45, 6104.
S. W. Birtwell, H. Morgan, Integr. Biol. 2009, 1, 345.
G. R. Broder, R. T. Ranasinghe, J. K. She, S. Banu, S. W. Birtwell, G. Cavalli, G. S. Galitonov, D. Holmes, H. F. P. Martins, K. F. MacDonald, C. Neylon, K. Zheludev, P. L. Roach, H. Morgan, Anal. Chem. 2008, 80, 1902.
C. Cao, S. Birtwell, J. Høgberg, H. Morgan, A. Wolff, D. Bang, Diagnostics 2012, 2, 72.
H. C. Jeon, S. G. Han, S.-G. Park, S.-M. Yang, RSC Adv. 2012, 2, 2334.
L. Bogunovic, D. Anselmetti, J. Regtmeier, J. Micromech. Microeng. 2011, 21, 027003.
C. W. ShieldsIV, S. Zhu, Y. Yang, B. Bharti, J. Liu, B. B. Yellen, O. D. Velev, G. P. López, Soft Matter 2013, 9, 9219.
N. Torras, J. P. Agusil, P. Vázquez, M. Duch, A. M. Hernández-Pinto, J. Samitier, E. J. De La Rosa, J. Esteve, T. Suárez, L. Pérez-García, J. A. Plaza, Adv. Mater. 2016, 28, 1449.
Y. He, K. Park, Mol. Pharmaceutics 2016, 13, 2164.
P. Kolhar, S. Mitragotri, Adv. Funct. Mater. 2012, 22, 3759.
S. Bhaskar, K. M. Pollock, M. Yoshida, J. Lahann, Small 2010, 6, 404.
P. L. Mage, A. T. Csordas, T. Brown, D. Klinger, M. Eisenstein, S. Mitragotri, C. Hawker, H. T. Soh, Nat. Mater. 2019, 18, 82.
G. Arrabito, H. Schroeder, K. Schröder, C. Filips, U. Marggraf, C. Dopp, M. Venkatachalapathy, L. Dehmelt, P. I. H. Bastiaens, A. Neyer, C. M. Niemeyer, Small 2014, 10, 2870.
F. Brinkmann, M. Hirtz, A. M. Greiner, M. Weschenfelder, B. Waterkotte, M. Bastmeyer, H. Fuchs, Small 2013, 9, 3266.
T. Patiño, J. Soriano, L. Barrios, E. Ibáñez, C. Nogués, Sci. Rep. 2015, 5, 11371.
G. Faccio, S. Senkalla, L. Thöny-Meyer, M. Richter, RSC Adv. 2015, 5, 22319.
T. Kaufmann, M. T. Gokmen, C. Wendeln, M. Schneiders, S. Rinnen, H. F. Arlinghaus, S. A. F. Bon, F. E. Du Prez, B. J. Ravoo, Adv. Mater. 2011, 23, 79.
T. Kaufmann, C. Wendeln, M. T. Gokmen, S. Rinnen, M. M. Becker, H. F. Arlinghaus, D. Prez, B. Jan, Chem. Commun. 2013, 49, 63.
J.-N. Kuo, H.-W. Wu, G.-B. Lee, Opt. Express 2006, 14, 6844.
X. Zhao, Y. Cui, Y. He, S. Wang, J. Wang, Sens. Actuators, B 2020, 304, 127265.
M. Han, X. Gao, J. Z. Su, S. Nie, Nat. Biotechnol. 2001, 19, 631.
M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, D. H. Kim, Nat. Commun. 2015, 6, 1.
S. Liu, W. Liu, W. Ji, J. Yu, W. Zhang, L. Zhang, W. Xie, Sci. Rep. 2016, 6, 22530.
B. H. Kim, S. Nam, N. Oh, S. Y. Cho, K. J. Yu, C. H. Lee, J. Zhang, K. Deshpande, P. Trefonas, J. H. Kim, J. Lee, J. H. Shin, Y. Yu, J. Bin Lim, S. M. Won, Y. K. Cho, N. H. Kim, K. J. Seo, H. Lee, T. Il Kim, M. Shim, J. A. Rogers, ACS Nano 2016, 10, 4920.
C. R. Kagan, E. Lifshitz, E. H. Sargent, D. V. Talapin, Science 2016, 353, aac5523.
T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, H. Wolf, Nat. Nanotechnol. 2007, 2, 570.
K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, B. Gimi, Mater. Sci. Eng., C 2013, 33, 4453.
J. M. Kebschull, A. M. Zador, Nat. Methods 2018, 15, 871.
M. Meldal, S. F. Christensen, Angew. Chem., Int. Ed. 2010, 49, 3473.
A. F. Smith, P. Patton, S. E. Skrabalak, Adv. Funct. Mater. 2016, 26, 1315.
R. Gómez-Martínez, A. M. Hernández-Pinto, M. Duch, P. Vázquez, K. Zinoviev, E. J. de la Rosa, J. Esteve, T. Suárez, J. A. Plaza, Nat. Nanotechnol. 2013, 8, 517.
M. Duch, N. Torras, M. Asami, T. Suzuki, M. I. Arjona, R. Gómez-Martínez, M. D. VerMilyea, R. Castilla, J. A. Plaza, A. C. F. Perry, Nat. Mater. 2020, 19, 1114.
P. S. Dittrich, A. Manz, Nat. Rev. Drug Discovery 2006, 5, 210.
J. Fredonnet, J. Foncy, S. Lamarre, J.-C. Cau, E. Trévisiol, J.-P. Peyrade, J. M. François, C. Séverac, Microelectron. Eng. 2013, 111, 379.
Contributed Indexing:
Keywords: anisotropy; barcoding; molecular multiplexing; polymer pen lithography; polymeric microparticles
Substance Nomenclature:
0 (Polymers)
Entry Date(s):
Date Created: 20201020 Date Completed: 20210623 Latest Revision: 20210623
Update Code:
20240105
DOI:
10.1002/smll.202004691
PMID:
33079486
Czasopismo naukowe
Next generation life science technologies will require the integration of building blocks with tunable physical and chemical architectures at the microscale. A central issue is to govern the multidimensional anisotropic space that defines these microparticle attributes. However, this control is limited to one or few dimensions due to profound fabrication tradeoffs, a problem that is exacerbated by miniaturization. Here, a vast number of anisotropic dimensions are integrated combining SU-8 photolithography with (bio)chemical modifications via soft-lithography. Microparticles in a 15-D anisotropic space are demonstrated, covering branching, faceting, fiducial, topography, size, aspect ratio, stiffness, (bio)molecular and quantum dot printing, top/bottom surface coverage, and quasi-0D, 1D, 2D, and 3D surface patterning. The strategy permits controlled miniaturization on physical dimensions below 1 µm and molecular patterns below 1 µm 2 . By combining building blocks, anisotropic microparticles detect pH changes, form the basis for a DNA-assay recognition platform, and obtain an extraordinary volumetric barcoding density up to 1093 codes µm -3 in a 3 × 12 × 0.5 µm 3 volume.
(© 2020 Wiley-VCH GmbH.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies