Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Nutritional profile of rodent diets impacts experimental reproducibility in microbiome preclinical research.

Tytuł:
Nutritional profile of rodent diets impacts experimental reproducibility in microbiome preclinical research.
Autorzy:
Tuck CJ; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada. .; Department of Dietetics, Nutrition and Sport, La Trobe University, Bundoora, VIC, Australia. .
De Palma G; Farncombe Institute, McMaster University, Hamilton, ON, Canada.
Takami K; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada.
Brant B; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada.
Caminero A; Farncombe Institute, McMaster University, Hamilton, ON, Canada.
Reed DE; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada.
Muir JG; Department of Gastroenterology, Monash University, Melbourne, Australia.
Gibson PR; Department of Gastroenterology, Monash University, Melbourne, Australia.
Winterborn A; Faculty of Health Sciences, Queen's University, Kingston, ON, Canada.
Verdu EF; Farncombe Institute, McMaster University, Hamilton, ON, Canada.
Bercik P; Farncombe Institute, McMaster University, Hamilton, ON, Canada.
Vanner S; Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada.
Źródło:
Scientific reports [Sci Rep] 2020 Oct 20; Vol. 10 (1), pp. 17784. Date of Electronic Publication: 2020 Oct 20.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
MeSH Terms:
Diet*
Microbiota*
Reproducibility of Results*
Gastrointestinal Microbiome/*genetics
RNA, Ribosomal, 16S/*genetics
Animal Nutritional Physiological Phenomena ; Animals ; Fatty Acids/metabolism ; Female ; Fermentation ; Male ; Mice ; Mice, Inbred C57BL ; Nutrition Assessment ; Research Design
References:
Gastroenterology. 2019 Jun;156(8):2266-2280. (PMID: 30802444)
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10011-6. (PMID: 16782812)
Nat Commun. 2018 Nov 13;9(1):4630. (PMID: 30425247)
Gastroenterology. 2014 Jan;146(1):67-75.e5. (PMID: 24076059)
Biol Sex Differ. 2015 Aug 06;6:13. (PMID: 26251695)
Curr Dev Nutr. 2020 Mar 09;4(4):nzaa031. (PMID: 32258990)
Nat Methods. 2010 May;7(5):335-6. (PMID: 20383131)
Gut. 2016 Jun;65(6):894-5. (PMID: 27197119)
Appl Environ Microbiol. 2011 Jun;77(11):3846-52. (PMID: 21460107)
Cell Host Microbe. 2015 Jan 14;17(1):72-84. (PMID: 25532804)
Gastroenterology. 2019 Sep;157(3):881-883. (PMID: 31129127)
BMC Microbiol. 2006 Nov 30;6:98. (PMID: 17137493)
Genome Biol. 2015 Apr 08;16:67. (PMID: 25887922)
Nature. 2006 Dec 21;444(7122):1027-31. (PMID: 17183312)
Am J Clin Nutr. 2012 Mar;95(3):670-7. (PMID: 22258271)
Gut. 2017 Oct;66(10):1869-1871. (PMID: 28069831)
PLoS One. 2013 Apr 22;8(4):e61217. (PMID: 23630581)
Am J Physiol Endocrinol Metab. 2018 Dec 1;315(6):E1087-E1097. (PMID: 30130151)
Neurogastroenterol Motil. 2018 Jan;30(1):. (PMID: 29094792)
Dis Model Mech. 2015 Jan;8(1):1-16. (PMID: 25561744)
Cell Metab. 2008 Apr;7(4):277. (PMID: 18396128)
Neurogastroenterol Motil. 2019 Oct;31(10):e13675. (PMID: 31290223)
J Microbiol Methods. 2006 Jul;66(1):87-95. (PMID: 16289391)
Nature. 2016 Feb 18;530(7590):264. (PMID: 26887470)
Gut Microbes. 2016 Jul 3;7(4):313-322. (PMID: 27355107)
Genome Res. 2015 Oct;25(10):1558-69. (PMID: 26260972)
Appl Environ Microbiol. 2006 Jul;72(7):5069-72. (PMID: 16820507)
Appl Environ Microbiol. 2007 Aug;73(16):5261-7. (PMID: 17586664)
Nature. 2014 Mar 27;507(7493):423-5. (PMID: 24678540)
Neurogastroenterol Motil. 2017 Apr;29(4):. (PMID: 27747984)
ILAR J. 2006;47(4):364-9. (PMID: 16963816)
Aliment Pharmacol Ther. 2016 Jan;43(2):181-96. (PMID: 26527169)
PLoS Biol. 2010 Jun 29;8(6):e1000412. (PMID: 20613859)
Expert Rev Gastroenterol Hepatol. 2014 Sep;8(7):819-34. (PMID: 24830318)
Nature. 2016 May 25;533(7604):452-4. (PMID: 27225100)
Ann Am Thorac Soc. 2014 May;11(4):513-21. (PMID: 24601676)
Adipocyte. 2016 Oct 28;5(4):359-368. (PMID: 27994949)
Gastroenterology. 2018 Mar;154(4):1037-1046.e2. (PMID: 29174952)
PLoS One. 2014 Jan 29;9(1):e86366. (PMID: 24489720)
J Atheroscler Thromb. 2017 Jul 1;24(7):660-672. (PMID: 28552897)
J Agric Food Chem. 2009 Jan 28;57(2):554-65. (PMID: 19123815)
J Clin Invest. 2018 Jan 2;128(1):267-280. (PMID: 29202473)
J Clin Gastroenterol. 2006 Mar;40(3):235-43. (PMID: 16633129)
Nature. 2014 Jan 30;505(7485):612-3. (PMID: 24482835)
Lab Anim (NY). 2017 Mar 22;46(4):114-122. (PMID: 28328896)
Nutr Metab (Lond). 2018 Jan 15;15:3. (PMID: 29371873)
Front Immunol. 2019 Feb 07;10:151. (PMID: 30792714)
Eur J Nutr. 2012 Apr;51(3):293-9. (PMID: 21671042)
PLoS One. 2018 Jul 27;13(7):e0201073. (PMID: 30052654)
Nat Commun. 2014 Jul 29;5:4500. (PMID: 25072318)
Nat Rev Gastroenterol Hepatol. 2019 Jan;16(1):7-18. (PMID: 30214038)
Microbiome. 2017 Aug 14;5(1):100. (PMID: 28807046)
J Agric Food Chem. 2007 Aug 8;55(16):6619-27. (PMID: 17625872)
Pac Symp Biocomput. 2012;:235-46. (PMID: 22174279)
J Gastroenterol Hepatol. 2017 Mar;32 Suppl 1:53-61. (PMID: 28244665)
Molecules. 2016 Nov 23;21(11):. (PMID: 27886118)
Gut Microbes. 2019;10(3):261-269. (PMID: 30442070)
J Transl Med. 2017 Apr 8;15(1):73. (PMID: 28388917)
Sci Rep. 2019 Feb 11;9(1):1772. (PMID: 30742005)
J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Feb 5;784(2):395-403. (PMID: 12505787)
Sci Rep. 2018 Mar 6;8(1):4065. (PMID: 29511208)
Grant Information:
158242 Canada CIHR; 168840 Canada CIHR
Substance Nomenclature:
0 (Fatty Acids)
0 (RNA, Ribosomal, 16S)
Entry Date(s):
Date Created: 20201021 Date Completed: 20210209 Latest Revision: 20210209
Update Code:
20240105
PubMed Central ID:
PMC7575541
DOI:
10.1038/s41598-020-74460-8
PMID:
33082369
Czasopismo naukowe
The lack of reproducibility of animal experimental results between laboratories, particularly in studies investigating the microbiota, has raised concern among the scientific community. Factors such as environment, stress and sex have been identified as contributors, whereas dietary composition has received less attention. This study firstly evaluated the use of commercially available rodent diets across research institutions, with 28 different diets reported by 45 survey respondents. Secondly, highly variable ingredient, FODMAP (Fermentable Oligo-, Di-, Mono-saccharides And Polyols) and gluten content was found between different commercially available rodent diets. Finally, 40 mice were randomized to four groups, each receiving a different commercially available rodent diet, and the dietary impact on cecal microbiota, short- and branched-chain fatty acid profiles was evaluated. The gut microbiota composition differed significantly between diets and sexes, with significantly different clusters in β-diversity. Total BCFA were highest (p = 0.01) and SCFA were lowest (p = 0.03) in mice fed a diet lower in FODMAPs and gluten. These results suggest that nutritional composition of commercially available rodent diets impact gut microbiota profiles and fermentation patterns, with major implications for the reproducibility of results across laboratories. However, further studies are required to elucidate the specific dietary factors driving these changes.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies