Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates.

Tytuł:
Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates.
Autorzy:
Mertens JA; Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA.
Skory CD; Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA.
Nichols NN; Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA.
Hector RE; Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA.
Źródło:
Biotechnology progress [Biotechnol Prog] 2021 Mar; Vol. 37 (2), pp. e3094. Date of Electronic Publication: 2020 Oct 30.
Typ publikacji:
Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Publication: <2010-> : Hoboken, NJ : Wiley-Blackwell
Original Publication: [New York, N.Y. : American Institute of Chemical Engineers, c1985-
MeSH Terms:
Lignin/*antagonists & inhibitors
Saccharomyces cerevisiae/*metabolism
Saccharomyces cerevisiae Proteins/*metabolism
Transcription Factors/*metabolism
Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae/isolation & purification ; Saccharomyces cerevisiae Proteins/genetics ; Stress, Physiological ; Transcription Factors/genetics
References:
Klinke H, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 1999;65:24-33.
Palmqvist E, Hahn-Hägerdahl B. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GNDI, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-349.
Hristozova T, Angelov A, Tzvetkova B, et al. Effect of furfural on carbon metabolism key enzymes of lactose-assimilating yeasts. Enzyme Microb Technol. 2006;39:1108-1112.
Choudhary J, Singh S, Nain L. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng. 2017;123:342-346.
Favaro L, Basaglia M, Trento A, et al. Exploring grape marc as trove for new thermotolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnol Biofuels. 2013;6:168.
Field SJ, Ryden P, Wilson D, et al. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnol Biofuels. 2015;8:33.
Jin M, Sarks C, Gunawan C, et al. Phenotypic selection of wild Saccharomyces cerevisiae strain or simultaneous saccharification and co-fermentation of AFEX™ pretreated corn stover. Biotechnol Biofuels. 2013;6:108.
Mertens JA, Kelly A, Hector RE. Screening for inhibitor tolerant Saccharomyces cerevisiae strains from diverse environments for use as platform strains for production of fuels and chemicals from biomass. Bioresour Technol Rep. 2018;3:154-161.
Pereira FB, Romani A, Ruiz HA, Teixeira JA, Domingues L. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour Technol. 2014;161:192-199.
Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005;121:451-460.
Demeke MM, Dietz H, Li Y, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulosic hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6:89.
Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquié-Moreno MR, Thevelein JM. Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulosic based bioethanol production. Biotechnol Biofuels. 2013;6:120.
Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol. 1998;49:691-697.
Larsson S, Reimann A, Nivebrant N, Jönsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl Biochem Biotechnol. 1999;777:91-104.
Larsson S, Cassland P, Jönsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenylacrylic acids and lignocellulosic hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol. 2001;57:167-174.
Petersson A, Almeida JR, Modig T, Hahn-Hägerdal B, Gorwa-Grausland MF. A 5-hydoxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23:455-464.
Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover, YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulosic derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genom. 2010;11:660.
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels. 2016;9:9.
Sasano Y, Watanabe D, Ukibe K, et al. Overexpression of the yeast transcription activator MSN2 confers furfural resistance and increase the initial fermentation rate in ethanol production. J Biosci Bioeng. 2011;113:451-455.
Alrikksson B, Horváth IS, Jönsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulosic-derived fermentation inhibitors. Process Biochem. 2010;45:264-271.
Kim D, Hahn J. Roles of the Yap1 transcription factor and antioxidants in Saccaromyce cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol. 2013;79:5069-5077.
Wallace-Salinas V, Signori L, Li Y, et al. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express. 2014;4:56.
Avci A, Saha BC, Kennedy G, Cotta MA. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolosis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresour Technol. 2013;142:312-319.
Hector RE, Mertens JA, Nichols NN. Development and characterization of vectors for tunable expression of both xylose-regulated and constitutive gene expression in Saccharomyces yeasts. New Biotechnol. 2019;53:16-23.
Gietz RD, Woods RA. Transformation of yeast by the Liac/SS carrier DNA/PEG method. Methods Enzymol. 2002;350:87-96.
Westermann B, Neupert W. Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast. 2000;16:1421-1427.
Wu G, Xu Z, Jönsson LJ. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance to yeast to lignocellulosic derived inhibitors in biomass conversion. Microb Cell Fact. 2017;16:199.
Nichols NN, Hector RE, Saha BC, Frazer SE, Kennedy GJ. Biological abatement of inhibitors in rice hull hydrolysate and fermentation to ethanol using conventional and engineered microbes. Biomass Bioenergy. 2014;67:79-88.
Coleman ST, Epping EA, Steggerda SM, Moye-Rowley WS. Yap1p actaivates gene transcription in an oxidant-specific fashion. Mol Cell Biol. 1999;19:8302-8313.
Sardi M, Paithane V, Place M, et al. Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet. 2018;14:e1007217.
Grant Information:
5010-41000-161-00D U.S. Department of Agriculture, Agricultural Research Service; 5010-41000-163-00D U.S. Department of Agriculture, Agricultural Research Service
Contributed Indexing:
Keywords: inhibitor-tolerant yeast; lignocellulosic inhibitors; renewable fuels; transcription factors
Substance Nomenclature:
0 (Saccharomyces cerevisiae Proteins)
0 (Transcription Factors)
0 (YAP1 protein, S cerevisiae)
11132-73-3 (lignocellulose)
9005-53-2 (Lignin)
Entry Date(s):
Date Created: 20201021 Date Completed: 20220128 Latest Revision: 20220128
Update Code:
20240105
DOI:
10.1002/btpr.3094
PMID:
33085224
Czasopismo naukowe
Numerous transcription factor genes associated with stress response are upregulated in Saccharomyces cerevisiae grown in the presence of inhibitors that result from pretreatment processes to unlock simple sugars from biomass. To determine if overexpression of transcription factors could improve inhibitor tolerance in robust S. cerevisiae environmental isolates as has been demonstrated in S. cerevisiae haploid laboratory strains, transcription factors were overexpressed at three different expression levels in three S. cerevisiae environmental isolates. Overexpression of the YAP1 transcription factor in these isolates did not lead to increased growth rate or reduced lag in growth, and in some cases was detrimental, when grown in the presence of either lignocellulosic hydrolysates or furfural and 5-hydroxymethyl furfural individually. The expressed Yap1p localized correctly and the expression construct improved inhibitor tolerance of a laboratory strain as previously reported, indicating that lack of improvement in the environmental isolates was due to factors other than nonfunctional expression constructs or mis-folded protein. Additional stress-related transcription factors, MSN2, MSN4, HSF1, PDR1, and RPN4, were also overexpressed at three different expression levels and all failed to improve inhibitor tolerance. Transcription factor overexpression alone is unlikely to be a viable route toward increased inhibitor tolerance of robust environmental S. cerevisiae strains.
(© 2020 American Institute of Chemical Engineers.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies