Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Regulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β-catenin signalling via interaction with Gli1.

Tytuł:
Regulation of hepatic stellate cell contraction and cirrhotic portal hypertension by Wnt/β-catenin signalling via interaction with Gli1.
Autorzy:
Zhang F; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Wang F; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
He J; The Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
Lian N; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Wang Z; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Shao J; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Ding H; Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
Tan S; Department of Integrated TCM & Western Medicine in Hepatology, The Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
Chen A; Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA.
Zhang Z; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Wang S; Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
Zheng S; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
Źródło:
British journal of pharmacology [Br J Pharmacol] 2021 Jun; Vol. 178 (11), pp. 2246-2265. Date of Electronic Publication: 2021 Apr 14.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
MeSH Terms:
Hepatic Stellate Cells*
Hypertension, Portal*/pathology
Wnt Signaling Pathway*
Zinc Finger Protein GLI1*
Animals ; Cell Line ; Humans ; Liver Cirrhosis/pathology ; Mice ; Transcription Factor 4
References:
Adler, J., & Parmryd, I. (2010). Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry. Part a: The Journal of the International Society for Analytical Cytology, 77(8), 733-742. https://doi.org/10.1002/cyto.a.20896.
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology, 176, S21-S141. https://doi.org/10.1111/bph.14748.
Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. British Journal of Pharmacology, 176, S297-S396. https://doi.org/10.1111/bph.14752.
Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. British Journal of Pharmacology, 175(3), 407-411.
Arthofer, E., Hot, B., Petersen, J., Strakova, K., Jager, S., Grundmann, M., Kostenis, E., Gutkind, J. S., & Schulte, G. (2016). WNT stimulation dissociates a frizzled 4 inactive-state complex with Gα12/13. Molecular Pharmacology, 90(4), 447-459.
Bataller, R., Gines, P., Nicolas, J. M., Gorbig, M. N., Garcia-Ramallo, E., Gasull, X., Bosch, J., Arroyo, V., & Rodes, J. (2000). Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology, 118(6), 1149-1156. https://doi.org/10.1016/s0016-5085(00)70368-4.
Cheng, J. H., She, H., Han, Y. P., Wang, J., Xiong, S., Asahina, K., & Tsukamoto, H. (2008). Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294(1), G39-G49. https://doi.org/10.1152/ajpgi.00263.2007.
Cherry, A. L., Finta, C., Karlstrom, M., Jin, Q., Schwend, T., Astorga-Wells, J., Zubarev, R. A., Del Campo, M., Criswell, A. R., de Sanctis, D., Jovine, L., & Toftgard, R. (2013). Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 12), 2563-2579. https://doi.org/10.1107/S0907444913028473.
Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., … Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987-993. https://doi.org/10.1111/bph.14153.
Davis, J. S., Hassanzadeh, S., Winitsky, S., Lin, H., Satorius, C., Vemuri, R., Hassanzadeh, S., Winitsky, S., Lin, H., Satorius, C., Vemuri, R., Aletras, A. H., Wen, H., & Epstein, N. D. (2001). The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell, 107(5), 631-641. https://doi.org/10.1016/s0092-8674(01)00586-4.
de Carcer, G., Wachowicz, P., Martinez-Martinez, S., Oller, J., Mendez-Barbero, N., Escobar, B., González-Loyola, A., Takaki, T., El Bakkali, A., Cámara, J. A., Jiménez-Borreguero, L. J., Bustelo, X. R., Cañamero, M., Mulero, F., de los Ángeles Sevilla, M., Montero, M. J., Redondo, J. M., & Malumbres, M. (2017). Plk1 regulates contraction of postmitotic smooth muscle cells and is required for vascular homeostasis. Nature Medicine, 23(8), 964-974. https://doi.org/10.1038/nm.4364.
Domenicali, M., Caraceni, P., Giannone, F., Baldassarre, M., Lucchetti, G., Quarta, C., Patti, C., Catani, L., Nanni, C., Lemoli, R. M., & Bernardi, M. (2009). A novel model of CCl4-induced cirrhosis with ascites in the mouse. Journal of Hepatology, 51(6), 991-999. https://doi.org/10.1016/j.jhep.2009.09.008.
Friedman, S. L. (2008). Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews, 88(1), 125-172. https://doi.org/10.1152/physrev.00013.2007.
Gracia-Sancho, J., Marrone, G., & Fernandez-Iglesias, A. (2019). Hepatic microcirculation and mechanisms of portal hypertension. Nature Reviews. Gastroenterology & Hepatology, 16(4), 221-234. https://doi.org/10.1038/s41575-018-0097-3.
Graham, T. A., Weaver, C., Mao, F., Kimelman, D., & Xu, W. (2000). Crystal structure of a β-catenin/Tcf complex. Cell, 103(6), 885-896. https://doi.org/10.1016/s0092-8674(00)00192-6.
He, W. Q., Peng, Y. J., Zhang, W. C., Lv, N., Tang, J., Chen, C., Zhang, C. H., Gao, S., Chen, H. Q., Zhi, G., & Zhu, M. S. (2008). Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology, 135(2), 610-620. https://doi.org/10.1053/j.gastro.2008.05.032.
Hong, J. J., Pan, F. Y., Qian, Y., Cheng, L. C., Zhang, H. X., Xue, B., & Li, C. J. (2009). Overexpression of β-catenin is responsible for the development of portal hypertension during liver cirrhosis. Anatomical Record (Hoboken), 292(6), 818-826. https://doi.org/10.1002/ar.20897.
Huang, C. K., Yu, T., de la Monte, S. M., Wands, J. R., Derdak, Z., & Kim, M. (2015). Restoration of Wnt/β-catenin signaling attenuates alcoholic liver disease progression in a rat model. Journal of Hepatology, 63(1), 191-198. https://doi.org/10.1016/j.jhep.2015.02.030.
Hui, C. C., & Angers, S. (2011). Gli proteins in development and disease. Annual Review of Cell and Developmental Biology, 27, 513-537. https://doi.org/10.1146/annurev-cellbio-092910-154048.
Jalan, R., De Chiara, F., Balasubramaniyan, V., Andreola, F., Khetan, V., Malago, M., Pinzani, M., Mookerjee, R. P., & Rombouts, K. (2016). Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. Journal of Hepatology, 64(4), 823-833. https://doi.org/10.1016/j.jhep.2015.11.019.
Kharbanda, K. K., Rogers, D. D. 2nd, Wyatt, T. A., Sorrell, M. F., & Tuma, D. J. (2004). Transforming growth factor-β induces contraction of activated hepatic stellate cells. Journal of Hepatology, 41(1), 60-66. https://doi.org/10.1016/j.jhep.2004.03.019.
Klein, S., Rick, J., Lehmann, J., Schierwagen, R., Schierwagen, I. G., Verbeke, L., Hittatiya, K., Uschner, F. E., Manekeller, S., Strassburg, C. P., & Trebicka, J. (2017). Janus-kinase-2 relates directly to portal hypertension and to complications in rodent and human cirrhosis. Gut, 66(1), 145-155. https://doi.org/10.1136/gutjnl-2015-309600.
Klein, S., Van Beuge, M. M., Granzow, M., Beljaars, L., Schierwagen, R., Kilic, S., Heidari, I., Huss, S., Sauerbruch, T., Poelstra, K., & Trebicka, J. (2012). HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. Journal of Hepatology, 57(6), 1220-1227. https://doi.org/10.1016/j.jhep.2012.07.033.
Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255-278. https://doi.org/10.1038/nprot.2016.169.
Lawson, C. D., & Ridley, A. J. (2018). Rho GTPase signaling complexes in cell migration and invasion. The Journal of Cell Biology, 217(2), 447-457. https://doi.org/10.1083/jcb.201612069.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology. https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.15178.
Liu, S., Yeh, T. H., Singh, V. P., Shiva, S., Krauland, L., Li, H., Zhang, P., Kharbanda, K., Ritov, V., Monga, S. P., Scott, D. K., Eagon, P. K., & Behari, J. (2012). β-Catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice. Hepatology, 55(3), 931-940. https://doi.org/10.1002/hep.24766.
Liu, Z., Van Rossen, E., Timmermans, J. P., Geerts, A., van Grunsven, L. A., & Reynaert, H. (2011). Distinct roles for non-muscle myosin II isoforms in mouse hepatic stellate cells. Journal of Hepatology, 54(1), 132-141. https://doi.org/10.1016/j.jhep.2010.06.020.
MadanKumar, P., NaveenKumar, P., Manikandan, S., Devaraj, H., & NiranjaliDevaraj, S. (2014). Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling. Toxicology and Applied Pharmacology, 277(2), 210-220. https://doi.org/10.1016/j.taap.2014.03.008.
Mann, J., & Mann, D. A. (2009). Transcriptional regulation of hepatic stellate cells. Advanced Drug Delivery Reviews, 61(7-8), 497-512. https://doi.org/10.1016/j.addr.2009.03.011.
Mederacke, I., Dapito, D. H., Affo, S., Uchinami, H., & Schwabe, R. F. (2015). High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nature Protocols, 10(2), 305-315. https://doi.org/10.1038/nprot.2015.017.
Melton, A. C., Datta, A., & Yee, H. F. Jr. (2006). [Ca2+]i-independent contractile force generation by rat hepatic stellate cells in response to endothelin-1. American Journal of Physiology. Gastrointestinal and Liver Physiology, 290(1), G7-G13. https://doi.org/10.1152/ajpgi.00337.2005.
Monga, S. P. (2015). β-Catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology, 148(7), 1294-1310. https://doi.org/10.1053/j.gastro.2015.02.056.
Myung, S. J., Yoon, J. H., Gwak, G. Y., Kim, W., Lee, J. H., Kim, K. M., Lee, J. H., Kim, K. M., Shin, C. S., Jang, J. J., Lee, S. H., Lee, S. M., & Lee, H. S. (2007). Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Letters, 581(16), 2954-2958. https://doi.org/10.1016/j.febslet.2007.05.050.
Noubissi, F. K., Goswami, S., Sanek, N. A., Kawakami, K., Minamoto, T., Moser, A., Grinblat, Y., & Spiegelman, V. S. (2009). Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Research, 69(22), 8572-8578. https://doi.org/10.1158/0008-5472.CAN-09-1500.
Noubissi, F. K., Kim, T., Kawahara, T. N., Aughenbaugh, W. D., Berg, E., Longley, B. J., Athar, M., & Spiegelman, V. S. (2014). Role of CRD-BP in the growth of human basal cell carcinoma cells. The Journal of Investigative Dermatology, 134(6), 1718-1724. https://doi.org/10.1038/jid.2014.17.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Perugorria, M. J., Olaizola, P., Labiano, I., Esparza-Baquer, A., Marzioni, M., Marin, J. J. G., Bujanda, L., & Banales, J. M. (2019). Wnt-β-catenin signalling in liver development, health and disease. Nature Reviews. Gastroenterology & Hepatology, 16(2), 121-136. https://doi.org/10.1038/s41575-018-0075-9.
Pinzani, M., Failli, P., Ruocco, C., Casini, A., Milani, S., Baldi, E., Giotti, A., & Gentilini, P. (1992). Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. The Journal of Clinical Investigation, 90(2), 642-646. https://doi.org/10.1172/JCI115905.
Polizio, A. H., Chinchilla, P., Chen, X., Kim, S., Manning, D. R., & Riobo, N. A. (2011). Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. The Journal of Biological Chemistry, 286(22), 19589-19596. https://doi.org/10.1074/jbc.M110.197111.
Poy, F., Lepourcelet, M., Shivdasani, R. A., & Eck, M. J. (2001). Structure of a human Tcf4-β-catenin complex. Nature Structural Biology, 8(12), 1053-1057. https://doi.org/10.1038/nsb720.
Preziosi, M. E., Singh, S., Valore, E. V., Jung, G., Popovic, B., Poddar, M., Nagarajan, S., Ganz, T., & Monga, S. P. (2017). Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. Journal of Hepatology, 67(2), 360-369. https://doi.org/10.1016/j.jhep.2017.03.012.
Reynaert, H., Thompson, M. G., Thomas, T., & Geerts, A. (2002). Hepatic stellate cells: Role in microcirculation and pathophysiology of portal hypertension. Gut, 50(4), 571-581. https://doi.org/10.1136/gut.50.4.571.
Rombouts, K., Knittel, T., Machesky, L., Braet, F., Wielant, A., Hellemans, K., De Bleser, P., Gelman, I., Ramadori, G., & Geerts, A. (2002). Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. Journal of Hepatology, 37(6), 788-796. https://doi.org/10.1016/s0168-8278(02)00275-1.
Rosado, E., Rodriguez-Vilarrupla, A., Gracia-Sancho, J., Tripathi, D., Garcia-Caldero, H., Bosch, J., & Garcia-Pagan, J. C. (2013). Terutroban, a TP-receptor antagonist, reduces portal pressure in cirrhotic rats. Hepatology, 58(4), 1424-1435. https://doi.org/10.1002/hep.26520.
Russell, J. O., & Monga, S. P. (2018). Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annual Review of Pathology, 13, 351-378. https://doi.org/10.1146/annurev-pathol-020117-044010.
Smartt, H. J., Greenhough, A., Ordonez-Moran, P., Talero, E., Cherry, C. A., Wallam, C. A., Parry, L., Al Kharusi, M., Roberts, H. R., Mariadason, J. M., Clarke, A. R., Huelsken, J., Williams, A. C., & Paraskeva, C. (2012). β-Catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut, 61(9), 1306-1314. https://doi.org/10.1136/gutjnl-2011-300817.
Sohail, M. A., Hashmi, A. Z., Hakim, W., Watanabe, A., Zipprich, A., Groszmann, R. J., Dranoff, J. A., Torok, N. J., & Mehal, W. Z. (2009). Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology, 49(1), 185-194. https://doi.org/10.1002/hep.22589.
Soon, R. K. Jr., & Yee, H. F. Jr. (2008). Stellate cell contraction: Role, regulation, and potential therapeutic target. Clinics in Liver Disease, 12(4), 791-803viii. https://doi.org/10.1016/j.cld.2008.07.004.
Trebicka, J., Hennenberg, M., Laleman, W., Shelest, N., Biecker, E., Schepke, M., Nevens, F., Sauerbruch, T., & Heller, J. (2007). Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology, 46(1), 242-253. https://doi.org/10.1002/hep.21673.
Verbeke, L., Farre, R., Trebicka, J., Komuta, M., Roskams, T., Klein, S., Elst, I. V., Windmolders, P., Vanuytsel, T., Nevens, F., & Laleman, W. (2014). Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology, 59(6), 2286-2298. https://doi.org/10.1002/hep.26939.
Wu, X., Ma, Y., Shao, F., Tan, Y., Tan, T., Gu, L., Zhou, Y., Sun, B., Sun, Y., & Xu, Q. (2016). CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nature Communications, 7, 13498. https://doi.org/10.1038/ncomms13498.
Yeh, T. H., Krauland, L., Singh, V., Zou, B., Devaraj, P., Stolz, D. B., Franks, J., Monga, S. P., Sasatomi, E., & Behari, J. (2010). Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect, and intrahepatic cholestasis. Hepatology, 52(4), 1410-1419. https://doi.org/10.1002/hep.23801.
Yi, F., Pereira, L., Hoffman, J. A., Shy, B. R., Yuen, C. M., Liu, D. R., & Merrill, B. J. (2011). Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biology, 13(7), 762-770. https://doi.org/10.1038/ncb2283.
Zhan, S., Chan, C. C., Serdar, B., & Rockey, D. C. (2009). Fibronectin stimulates endothelin-1 synthesis in rat hepatic myofibroblasts via a Src/ERK-regulated signaling pathway. Gastroenterology, 136(7), 2345-2355.e2341-2344.
Zhang, F., Hao, M., Jin, H., Yao, Z., Lian, N., Wu, L., Shao, J., Chen, A., & Zheng, S. (2017). Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. British Journal of Pharmacology, 174(5), 409-423. https://doi.org/10.1111/bph.13701.
Zhang, F., Lu, S., He, J., Jin, H., Wang, F., Wu, L., Shao, J., Chen, A., & Zheng, S. (2018). Ligand activation of PPARγ by ligustrazine suppresses pericyte functions of hepatic stellate cells via SMRT-mediated transrepression of HIF-1α. Theranostics, 8(3), 610-626. https://doi.org/10.7150/thno.22237.
Zhang, Z., Yao, Z., Wang, L., Ding, H., Shao, J., Chen, A., Chen, A., Zhang, F., & Zheng, S. (2018). Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy, 14(12), 2083-2103. https://doi.org/10.1080/15548627.2018.1503146.
Zhi, G., Ryder, J. W., Huang, J., Ding, P., Chen, Y., Zhao, Y., Kamm, K. E., & Stull, J. T. (2005). Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17519-17524. https://doi.org/10.1073/pnas.0506846102.
Zinke, J., Schneider, F. T., Harter, P. N., Thom, S., Ziegler, N., Toftgard, R., Plate, K. H., & Liebner, S. (2015). β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Molecular Cancer, 14, 17. https://doi.org/10.1186/s12943-015-0294-4.
Grant Information:
81870423 National Natural Science Foundation of China; 82073914 National Natural Science Foundation of China; 31401210 National Natural Science Foundation of China; 19KJA310005 Major Project of the Natural Science Research of Jiangsu Higher Education Institutions; JKLPSE202005 Open Project of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; JKLPSE201815 Open Project of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; JKLPSE201804 Open Project of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica; Priority Academic Program Development of Jiangsu Higher Education Institutions; 2018020 Scientific Research Foundation of Third Institute of Oceanography of Ministry of Natural Resources; 2017Y0061 Science and Technology Plan Program of Fujian Province; 16CZP012SF04 Xiamen Marine Economic Innovation and Development Demonstration Project
Contributed Indexing:
Keywords: Gli1; Sufu; Wnt; contraction; hepatic stellate cell; portal hypertension; β-catenin
Substance Nomenclature:
0 (GLI1 protein, human)
0 (Gli1 protein, mouse)
0 (TCF4 protein, human)
0 (Tcf4 protein, mouse)
0 (Transcription Factor 4)
0 (Zinc Finger Protein GLI1)
Entry Date(s):
Date Created: 20201021 Date Completed: 20210705 Latest Revision: 20220531
Update Code:
20240105
DOI:
10.1111/bph.15289
PMID:
33085791
Czasopismo naukowe
Background and Purpose: Portal hypertension is a lethal complication of cirrhosis. Its mechanism and therapeutic targets remain largely unknown. Hepatic stellate cell (HSC) contraction increases intrahepatic vascular resistance contributing to portal hypertension. We investigated how HSC contraction was regulated by Wnt signalling and the therapeutic implications.
Experimental Approach: Liver tissues from cirrhotic patients were examined. Cirrhotic mice with genetic or pharmacological treatments were used for in vivo assessments, and their primary cells were isolated. Cellular functions and signalling pathways were analysed in human HSC-LX2 cells using real-time PCR, Western blotting, siRNA, luciferase reporter assay, chromatin immunoprecipitation, co-immunoprecipitation and site-directed mutagenesis.
Key Results: Wnt/β-catenin correlated with HSC contraction in human cirrhotic liver. Wnt3a stimulated Smo-independent Gli1 nuclear translocation followed by LARG-mediated RhoA activation leading to HSC contraction. Suppressor of fused (Sufu) negatively mediated Wnt3a-induced Gli1 nuclear translocation. Wnt/β-catenin repressed transcription of Sufu dependent on β-catenin/TCF4 interaction and TCF4 binding to Sufu promoter. Molecular simulation and site-directed mutagenesis identified the β-catenin residues Lys312 and Lys435 critically involved in this interaction. TCF4 binding to the sequence CACACCTTCC at Sufu promoter was required for transrepression of Sufu. In cirrhotic mice, short-term liver-targeting β-catenin deficiency or acute treatment with β-catenin inhibitors reduced portal pressure via restriction of HSC contraction rather than inhibiting HSC activation. Long-term deficiency or treatments also ameliorated liver injury, fibrosis and inflammation.
Conclusion and Implications: Interaction between Wnt/β-catenin and Smo-independent Gli1 pathways promoted HSC contraction via TCF4-dependent transrepression of Sufu. HSC-specific inhibition of β-catenin may have therapeutic benefits for cirrhotic portal hypertension.
(© 2020 The British Pharmacological Society.)
Comment in: Br J Pharmacol. 2021 Jan;178(2):378-380. (PMID: 33085773)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies