Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Indoor heat exposure in Baltimore: does outdoor temperature matter?

Tytuł:
Indoor heat exposure in Baltimore: does outdoor temperature matter?
Autorzy:
Waugh DW; Department of Earth and Planetary Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA. .
He Z; Department of Earth and Planetary Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA.
Zaitchik B; Department of Earth and Planetary Sciences, Johns Hopkins University School of Arts and Sciences, Baltimore, MD, USA.
Peng RD; Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
Diette GB; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hansel NN; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Matsui EC; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Breysse PN; Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
Breysse DH; Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
Koehler K; Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
Williams D; Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
McCormack MC; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.; Department of Environmental Health Sciences, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
Źródło:
International journal of biometeorology [Int J Biometeorol] 2021 Apr; Vol. 65 (4), pp. 479-488. Date of Electronic Publication: 2020 Oct 21.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York, NY : Springer Verlag
Original Publication: Leiden.
MeSH Terms:
Hot Temperature*
Housing*
Air Conditioning ; Baltimore ; Temperature
References:
Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD (2013) Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am J Respir Crit Care Med 187:1098–1103. (PMID: 10.1164/rccm.201211-1969OC)
Basu R (2009) High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health 8:40. (PMID: 10.1186/1476-069X-8-40)
Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63:2847–2863. (PMID: 10.1016/j.socscimed.2006.07.030)
Hoppe P, Martinac I (1998) Indoor climate and air quality. Review of cur- rent and future topics in the field of ISB study group 10. Int J Biometeorol 42:1–7. (PMID: 10.1007/s004840050075)
Intergovernmental Panel on Climate Change (2018) IPCC special report on the impacts of global warming of 1.5 °C: summary for policy makers. Incheon, Korea. https://www.ipcc.ch/sr15/ . Accessed 28 Jan 2019.
Kaiser R, Rubin CH, Henderson AK, Wolfe MI, Kieszak S, Parrott CL, Adcock M (2001) Heat-related death and mental illness during the 1999 Cincinnati heat wave. Am J Forensic Med Pathol 22:303–307. (PMID: 10.1097/00000433-200109000-00022)
Klepeis NE et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252. (PMID: 10.1038/sj.jea.7500165)
Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications. Bull Am Meteorol Soc 86:225–233. (PMID: 10.1175/BAMS-86-2-225)
Lin S, Luo M, Walker RJ, Liu X, Hwang SA, Chinery R (2009) Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 20:738–746. (PMID: 10.1097/EDE.0b013e3181ad5522)
Madrigano J, Ito K, Johnson S, Kinney PL, Matte T (2015) A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ Health Perspect 123:672–678. (PMID: 10.1289/ehp.1408178)
McCormack MC, Belli AJ, Waugh D, Matsui EC, Peng RD, Williams DA et al (2016) Respiratory effects of indoor heat and the interaction with air pollution in COPD. Ann Am Thorac Soc 13:2125–2131. (PMID: 10.1513/AnnalsATS.201605-329OC)
Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect 114:1331–1336. (PMID: 10.1289/ehp.9074)
Naughton MP, Henderson A, Mirabelli MC, Kaiser R, Wilhelm JL, Kieszak SM, Rubin CH, McGeehin MA (2002) Heat-related mortality during a 1999 heat wave in Chicago. Am J PrevMed 22:221–227. (PMID: 10.1016/S0749-3797(02)00421-X)
Nguyen JL, Dockery DW (2016) Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions. Int J Biometeorol 60:221–229. (PMID: 10.1007/s00484-015-1019-5)
Nguyen JL, Schwartz J, Dockery DW (2014) The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24:103–112. (PMID: 10.1111/ina.12052)
O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157:1074–1082. (PMID: 10.1093/aje/kwg096)
O’Neill MS, Zanobetti A, Schwartz J (2005) Disparities by race in heat-related mortality in four US cities: the role of air conditioning prevalence. J Urban Heal 82:191–197. (PMID: 10.1093/jurban/jti043)
Quinn A, Tamerius JD, Perzanowski M, Jacobson JS, Goldstein I, Acosta L, Shaman J (2014) Predicting indoor heat exposure risk during extreme heat events. Sci Total Environ 490:686–693. (PMID: 10.1016/j.scitotenv.2014.05.039)
Quinn A, Kinney P, Shaman J (2017) Predictors of summertime heat index levels in New York City apartments. Indoor Air 27:840–851. (PMID: 10.1111/ina.12367)
Rothfusz LP (1990) The heat index “equation” (or, more than you ever wanted to know about heat index). SR 90–23. National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Fort Worth. https://wonder.cdc.gov/wonder/help/Climate/ta_htindx.PDF.
Schwartz J (2005) Who is sensitive to extremes of temperature?: a case-only analysis. Epidemiology. 16:67–72. (PMID: 10.1097/01.ede.0000147114.25957.71)
Scott AA, Zaitchik B, Waugh DW, O’Meara K (2017) Intraurban temperature variability in Baltimore. J Appl Meteorol Climatol 56:159–171. (PMID: 10.1175/JAMC-D-16-0232.1)
Smargiassi A, Fournier M, Griot C, Baudouin Y, Kosatsky T (2008) Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J Expo Sci Environ Epidemiol 18:282–288. (PMID: 10.1038/sj.jes.7500588)
Tamerius JD, Perzanowski MS, Acosta LM, Jacobson JS, Goldstein IF, Quinn JW, Shaman J (2013) Socioeconomic and outdoor meteorological determinants of indoor temperature and humidity in New York City dwellings. Weather Clim Soc 5:168–179. (PMID: 10.1175/WCAS-D-12-00030.1)
United States Global Change Research Program (2018) Fourth national climate assessment, Vol II: Impacts, risks, and adaptation in the United States. US Global Change Research Program, Washington.
Vant-Hull B, Ramamurthy P, Havlik B, Jusino C, Corbin-Mark C, Schuerman M, Keefe J, Drapkin JK, Glenn AA (2018) The Harlem heat project: a unique media–community collaboration to study indoor heat waves. Bull Am Meteorol Soc 99:2491–2506. (PMID: 10.1175/BAMS-D-16-0280.1)
Watts N, Amann M, Arnell N et al (2018) The 2018 report of the Lancet countdown on health and climate change: shaping the health of nations for centuries to come. Lancet 392:247.
White-Newsome JL, Sánchez BN, Jolliet O, Zhang Z, Parker EA, Dvonch JT, O’Neill MS (2012) Climate change and health: indoor heat exposure in vulnerable populations. Environ Res 112:20–27. (PMID: 10.1016/j.envres.2011.10.008)
Grant Information:
R21ES024021 United States ES NIEHS NIH HHS; 83451001 U.S. Environmental Protection Agency; P50ES015903 U.S. Environmental Protection Agency
Contributed Indexing:
Keywords: Air conditioning; Heat exposure; Housing; Indoor temperature; Outdoor temperature
Entry Date(s):
Date Created: 20201022 Date Completed: 20210324 Latest Revision: 20210324
Update Code:
20240105
DOI:
10.1007/s00484-020-02036-2
PMID:
33089367
Czasopismo naukowe
Heat exposure of a population is often estimated by applying temperatures from outdoor monitoring stations. However, this can lead to exposure misclassification if residents do not live close to the monitoring station and temperature varies over small spatial scales due to land use/built environment variability, or if residents generally spend more time indoors than outdoors. Here, we compare summertime temperatures measured inside 145 homes in low-income households in Baltimore city with temperatures from the National Weather Service weather station in Baltimore. There is a large variation in indoor temperatures, with daily-mean indoor temperatures varying from 10 °C lower to 10 °C higher than outdoor temperatures. Furthermore, there is only a weak association between the indoor and outdoor temperatures across all houses, indicating that the outdoor temperature is not a good predictor of the indoor temperature for the residences sampled. It is shown that much of the variation is due to differences in the availability of air conditioning (AC). Houses with central AC are generally cooler than outdoors (median difference of - 3.4 °C) while those with no AC are generally warmer (median difference of 1.4 °C). For the collection of houses with central or room AC, there is essentially no relationship between indoor and outdoor temperatures, but for the subset of houses with no AC, there is a weak relationship (correlation coefficient of 0.36). The results presented here suggest future epidemiological studies of indoor exposure to heat would benefit from information on the availability of AC within the population.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies