Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Tissue response to white mineral aggregate-based cement containing barium sulfate as alternative radiopacifier: A randomized controlled animal study.

Tytuł:
Tissue response to white mineral aggregate-based cement containing barium sulfate as alternative radiopacifier: A randomized controlled animal study.
Autorzy:
Bortoluzzi EA; Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
da Silveira Teixeira C; Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
Broon NJ; Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico City, Mexico.
Consolaro A; Department of Surgery, Stomatology, Pathology and Radiology, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil.
Pinheiro TN; Superior School of Health Sciences, State University of Amazonas, Manaus, Amazonas, Brazil.
da Fonseca Roberti Garcia L; Department of Dentistry - Endodontics Division, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
Pashley DH; Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, Georgia, USA.
Bramante CM; Department of Dentistry, Endodontics and Dental Materials, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil.
Źródło:
Microscopy research and technique [Microsc Res Tech] 2021 Apr; Vol. 84 (4), pp. 705-711. Date of Electronic Publication: 2020 Oct 21.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: New York, NY : Wiley-Liss, c1992-
MeSH Terms:
Calcium Compounds*
Root Canal Filling Materials*
Animals ; Male ; Rats ; Aluminum Compounds/toxicity ; Barium Sulfate ; Dental Cements ; Drug Combinations ; Materials Testing ; Oxides/toxicity ; Rats, Wistar ; Silicates ; Subcutaneous Tissue
References:
Aguilar, F. G., Garcia, L. F., Rossetto, H. L., Pardini, L. C., & Pires-de-Souza, F. C. (2011). Radiopacity evaluation of calcium aluminate cement containing different radiopacifying agents. Journal of Endodontics, 37, 67-71.
Aguilar, F. G., Roberti Garcia, L. F., & Panzeri Pires-de-Souza, F. C. (2012). Biocompatibility of new calcium aluminate cement (EndoBinder). Journal of Endodontics, 38, 367-371.
American National Standards Institute. (1979). Revised American National Standards Institute American Dental Association Document no. 41 for recommended standard practices for biological evaluation of dental materials. New York, NY: Am National Standards Institute.
Bosso-Martelo, R., Guerreiro-Tanomaru, J. M., Viapiana, R., Berbert, F. L., Duarte, M. A., & Tanomaru-Filho, M. (2016). Physicochemical properties of calcium silicate cements associated with microparticulate and nanoparticulate radiopacifiers. Clinical Oral Investigations, 20, 83-90.
Camilleri, J. (2008a). Characterization of hydration products of mineral trioxide aggregate. International Endodontic Journal, 41, 408-417.
Camilleri, J. (2008b). The physical properties of accelerated Portland cement for endodontic use. International Endodontic Journal, 41, 151-157.
Camilleri, J. (2010). Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root-end filling material. International Endodontic Journal, 43, 231-240.
Camilleri, J., & Gandolfi, M. G. (2010). Evaluation of the radiopacity of calcium silicate cements containing different radiopacifiers. International Endodontic Journal, 43, 21-30.
Castro-Raucci, L. M. S., Teixeira, L. N., Barbosa, A. F. S., Fernandes, R. R., Raucci-Neto, W., Jacobovitz, M., … de Oliveira, P. T. (2018). Calcium chloride-enriched calcium aluminate cement promotes in vitro osteogenesis. International Endodontic Journal, 51, 674-683.
Coomaraswamy, K. S., Lumley, P. J., & Hofmann, M. P. (2007). Effect of bismuth oxide radiopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. Journal of Endodontics, 33, 295-298.
Cunha, S. A., Rached, F. J., Jr., Alfredo, E., León, J. E., & Perez, D. E. (2011). Biocompatibility of sealers used in apical surgery: A histological study in rat subcutaneous tissue. Brazilian Dental Journal, 22, 299-305.
Dammaschke, T., Gerth, H. U., Zuchner, H., & Schäfer, E. (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cement. Dental Materials, 21, 731-738.
de Souza Costa, C. A., Hebling, J., Scheffel, D. L., Soares, D. G., Basso, F. G., & Ribeiro, A. P. (2014). Methods to evaluate and strategies to improve the biocompatibility of dental materials and operative techniques. Dental Materials, 30, 769-784.
Duarte, M. A., De Oliveira Demarchi, A. C., Yamashita, J. C., Kuga, M. C., & De Campos Fraga, S. (2005). Arsenic release provided by MTA and Portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 99, 648-650.
Estrela, C., Bammann, L. L., Estrela, C. R. A., Silva, R. S., & Pecora, J. D. (2000). Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Brazilian Dental Journal, 11, 3-9.
Federation Dentaire Internationale, Commission on Dental Products. (1982). Recommendations for clinical research protocols for dental materials. International Dental Journal, 32, 403-423.
Funteas, U. R., Wallace, J. A., & Fochtman, E. W. (2003). A comparative analysis of mineral trioxide aggregate and Portland cement. Australian Endodontic Journal, 29, 43-44.
Garcia, L., Cristiane, S., Wilson, M., Soraya, M., Lopes, R. A., Mônica, R., & de Freitas, O. (2011). Biocompatibility assessment of pastes containing copaiba oilresin, propolis, and calcium hydroxide in the subcutaneous tissue of rats. Journal of Conservative Dentistry, 14, 108-112.
Garcia, L. D. F. R., Huck, C., Magalhães, F. A. C., Souza, P. P. C., & Souza Costa, C. A. (2017). Systemic effect of mineral aggregate-based cements: Histopathological analysis in rats. Journal of Applied Oral Science, 25, 620-630.
Garcia, L. F., Aguilar, F. G., Rossetto, H. L., Sabino, M. G., & Pires-de-Souza, F. C. (2013). Staining susceptibility of new calcium aluminate cement (EndoBinder) in teeth: A 1-year in vitro study. Dental Traumatology, 29, 383-388.
Garcia, L. F., Chinelatti, M. A., Rossetto, H. L., & Pires-de-Souza, F. C. (2014). Solubility and disintegration of new calcium aluminate cement (EndoBinder) containing different radiopacifying agents. Journal of Endodontics, 40, 261-265.
Garcia, L. F., Huck, C., Menezes de Oliveira, L., de Souza, P. P., & de Souza Costa, C. A. (2014). Biocompatibility of new calcium aluminate cement: Tissue reaction and expression of inflammatory mediators and cytokines. Journal of Endodontics, 40, 2024-2029.
Garcia, L. F., Huck, C., Scardueli, C. R., & de Souza Costa, C. A. (2015). Repair of bone defects filled with new calcium aluminate cement (EndoBinder). Journal of Endodontics, 41, 864-870.
Hoshyari, N., Labbaf, H., Jalayer Naderi, N., Kazemi, A., Bastami, F., & Koopaei, M. (2016). Biocompatibility of Portland cement modified with titanium oxide and calcium chloride in a rat model. Iranian Endodontic Journal, 11, 124-128.
Huck, C., Barud, H. D., Basso, F. G., Costa, C. A., Hebling, J., & Garcia, L. D. (2017). Cytotoxicity of new calcium aluminate cement (EndoBinder) containing different radiopacifiers. Brazilian Dental Journal, 28, 57-64.
International Standards Organization. ISO; (2007(E)). Water-based cements: Part 1-powder/liquid acid-base cements. Geneva, Switzerland: ISO EN 991711.
Islam, I., Chng, H. K., & Yap, A. U. (2006). Comparison of the physical and mechanical properties of MTA and Portland cement. Journal of Endodontics, 32, 193-197.
Kanaya, S., Nemoto, E., Ebe, Y., Somerman, M. J., & Shimauchi, H. (2010). Elevated extracellular calcium increases fibroblast growth factor-2 gene and protein expression levels via a cAMP/PKA dependent pathway in cementoblasts. Bone, 47, 564-572.
Meyer, O. (2003). Testing and assessment strategies, including alternative and new approaches. Toxicology Letters, 11, 21-30.
Ozdemir, H. O., Ozçelik, B., Karabucak, B., & Cehreli, Z. C. (2008). Calcium ion diffusion from mineral trioxide aggregate through simulated root resorption defects. Dental Traumatology, 24, 70-73.
Parirokh, M., & Torabinejad, M. (2010). Mineral trioxide aggregate: A comprehensive literature review-part III: Clinical applications, drawbacks, and mechanism of action. Journal of Endodontics, 36, 400-413.
Ramos, J. C., Palma, P. J., Nascimento, R., Caramelo, F., Messias, A., Vinagre, A., & Santos, J. M. (2016). 1-year in vitro evaluation of tooth discoloration induced by 2 calcium silicate-based cements. Journal of Endodontics, 42, 1403-1407.
Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. London, UK: Universities Federation for Animal Welfare.
Shahi, S., Rahimi, S., Yavari, H. R., Mokhtari, H., Roshangar, L., Abasi, M. M., … Abdolrahimi, M. (2010). Effect of mineral trioxide aggregates and Portland cements on inflammatory cells. Journal of Endodontics, 36, 899-903.
Thomson, T. S., Berry, J. E., Somerman, M. J., & Kirkwood, K. L. (2003). Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. Journal of Endodontics, 29, 407-412.
Viapiana, R., Flumignan, D. L., Guerreiro-Tanomaru, J. M., Camilleri, J., & Tanomaru-Filho, M. (2014). Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers. International Endodontic Journal, 47, 437-448.
White, W. J. (2001). The use of laboratory animals in toxicologic research. In A. W. Hayes (Ed.), Principles and methods of toxicology (pp. 773-818). 4.ed. London: Taylor & Francis.
Yaltirik, M., Ozbas, H., Bilgic, B., & Issever, H. (2004). Reaction of connective tissue to mineral trioxide aggregate and amalgam. Journal of Endodontics, 30, 95-99.
Zand, V., Lotfi, M., Aghbali, A., Mesgariabbasi, M., Janani, M., Mokhtari, H., … Pakdel, S. M. (2016). Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model. Iranian Endodontic Journal, 11, 13-16.
Contributed Indexing:
Keywords: barium sulfate; biocompatible materials; inflammation; mineral trioxide aggregate
Substance Nomenclature:
0 (Aluminum Compounds)
25BB7EKE2E (Barium Sulfate)
0 (Calcium Compounds)
0 (Dental Cements)
0 (Drug Combinations)
0 (Oxides)
0 (Root Canal Filling Materials)
0 (Silicates)
Entry Date(s):
Date Created: 20201022 Date Completed: 20231006 Latest Revision: 20231006
Update Code:
20240105
DOI:
10.1002/jemt.23629
PMID:
33089621
Czasopismo naukowe
The purpose of this study was to investigate the tissue reaction stimulated by BaSO 4 - and Bi 2 O 3 -containing White MTA Angelus, in comparison with Bi 2 O 3 -containing white Portland cement, and white ProRoot MTA. Thirty-six adult male Wistar rats (Rattus norvegicus), weighing between 250 and 300 g, were distributed into three groups (n = 12) in accordance with the period of sacrifice (15, 30, and 60 days). Four polyethylene tubes filled with the tested cements were implanted into the dorsum of each rat. Lateral wall of the tubes served as the negative control. After the experimental periods, the animals were euthanized by overdose of pentobarbital anesthetic solution, and the specimens were prepared for microscopic analysis under ×50, ×100, and ×400 magnifications. Inflammatory scores (0-3) were used to grade the tissue reaction. Data were analyzed by the Kruskal-Wallis test and Dunn's test for individual comparisons (p < .05). A mild to moderate inflammatory tissue reaction was observed at the 15-day period, which decreased over the course of the periods for all cements, except for Portland cement. There was no significant difference among the tissue responses for ProRoot MTA, BaSO 4 - and Bi 2 O 3 -containing White MTA Angelus at the 60-day period (p > .05). The Portland group had moderate inflammatory reaction at the final period of analysis, which was statistically different when compared to the other groups (p < .05). The microscopic findings of this animal study suggest that the addition of BaSO 4 to White MTA Angelus does not hampers the biocompatibility of the cement.
(© 2020 Wiley Periodicals LLC.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies