Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales.

Tytuł:
General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales.
Autorzy:
Hautier Y; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .
Zhang P; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.; State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, 730000, Lanzhou, Gansu Province, People's Republic of China.; Institute of Eco-Environmental Forensics of Shandong University, 266237, Jinan, Shandong Province, People's Republic of China.; Ministry of Justice Hub for Research & Practice in Eco-Environmental Forensics, 266237, Qingdao, Shandong Province, People's Republic of China.
Loreau M; Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France.
Wilcox KR; Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA.
Seabloom EW; Department of Ecology, Evolution, and Behavior, University of MN, St. Paul, MN, 55108, USA.
Borer ET; Department of Ecology, Evolution, and Behavior, University of MN, St. Paul, MN, 55108, USA.
Byrnes JEK; Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
Koerner SE; Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
Komatsu KJ; Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA.
Lefcheck JS; Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA.
Hector A; University of Oxford Department of Plant Sciences, Oxford, OX1 3RB, UK.
Adler PB; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA.
Alberti J; Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina.
Arnillas CA; Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.
Bakker JD; School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195-4115, USA.
Brudvig LA; Department of Plant Biology and Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, USA.
Bugalho MN; Centre for Applied Ecology 'Prof. Baeta Neves' (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal.
Cadotte M; Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.
Caldeira MC; Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.
Carroll O; Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
Crawley M; Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK.
Collins SL; University of New Mexico, Department of Biology, Albuquerque, NM, 87131, USA.
Daleo P; Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina.
Dee LE; Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, 1560 30th Street, Boulder, CO, 80309-0450, USA.
Eisenhauer N; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.; Leipzig University, Institute of Biology, Deutscher Platz 5e, 04103, Leipzig, Germany.
Eskelinen A; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.; Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.; Department of Ecology and Genetics, University of Oulu, Oulu, Finland.
Fay PA; USDA-ARS Grassland, Soil, and Water Research Laboratory, Temple, TX, 76502, USA.
Gilbert B; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada.
Hansar A; Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole normale supérieure, CNRS, PSL University, 77140, St-Pierre-les-Nemours, France.
Isbell F; Department of Ecology, Evolution, and Behavior, University of MN, St. Paul, MN, 55108, USA.
Knops JMH; Department of Heatth and Environmental Sciences, Xi'an Jiaotong liverpool University, 214123, Suzhou, Jiangsu, China.
MacDougall AS; Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
McCulley RL; University of Kentucky, Plant & Soil Science, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
Moore JL; School of Biological Sciences, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia.
Morgan JW; Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, VIC, 3086, Australia.
Mori AS; Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa, 240-8501, Japan.
Peri PL; INTA (National Institute of Agricultural Research)- UNPA (Southern Patagonia National University)-CONICET, Santa Cruz, Argentina.
Pos ET; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Power SA; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
Price JN; Institute of Land, Water and Society, Charles Sturt University, Albury, NSW, 2640, Australia.
Reich PB; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.; Department of Forest Resources, University of Minnesota, Saint Paul, MN, USA.
Risch AC; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
Roscher C; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.; UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany.
Sankaran M; Ecology & Evolution Group, National Centre for Biological Sciences, TIFR, Bangalore, Karnataka, 560065, India.; School of Biology, University of Leeds, Leeds, LS2 9JT, UK.
Schütz M; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
Smith M; Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.
Stevens C; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
Tognetti PM; IFEVA-Facultad de Agronomia, Universidad de Buenos Aires - CONICET, Av San Martin 4453, C1417DSE, Ciudad Autonoma de Buenos Aires, Argentina.
Virtanen R; Department of Ecology and Genetics, University of Oulu, Oulu, Finland.
Wardle GM; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
Wilfahrt PA; Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA.
Wang S; Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China. .
Źródło:
Nature communications [Nat Commun] 2020 Oct 23; Vol. 11 (1), pp. 5375. Date of Electronic Publication: 2020 Oct 23.
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Biota*
Ecosystem*
Eutrophication*
Grassland*
Biodiversity ; Biomass ; Fertilization ; Models, Biological ; Plants
References:
Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130116 (2013).
Galloway, J. N. The global nitrogen cycle: past, present and future. Sci. China Ser. C. Life Sci. 48, 669–677 (2005).
Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001). (PMID: 1130310210.1126/science.1057544)
Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014). (PMID: 2453176310.1038/nature13014)
Xu, Z. W. et al. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J. Ecol. 103, 1308–1316 (2015). (PMID: 10.1111/1365-2745.12441)
Zhang, Y. H. et al. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Glob. Change Biol. 22, 1445–1455 (2016). (PMID: 10.1111/gcb.13140)
Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016). (PMID: 2755695110.1038/nature19324)
Thibaut, L. M. & Connolly, S. R. Understanding diversity-stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013). (PMID: 2309507710.1111/ele.12019)
Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015). (PMID: 2588335710.1126/science.aaa1788)
Koerner, S. E. et al. Nutrient additions cause divergence of tallgrass prairie plant communities resulting in loss of ecosystem stability. J. Ecol. 104, 1478–1487 (2016). (PMID: 10.1111/1365-2745.12610)
Yang, H. J. et al. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecol. Lett. 15, 619–626 (2012). (PMID: 2248749810.1111/j.1461-0248.2012.01778.x)
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island Press, 2005).
Shukla, P. R. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).
Wang, S. P., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography 42, 1200–1211 (2019). (PMID: 10.1111/ecog.04290)
Wang, S. P. & Loreau, M. Ecosystem stability in space: alpha, beta and gamma variability. Ecol. Lett. 17, 891–901 (2014). (PMID: 2481140110.1111/ele.12292)
Wang, S. P. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016). (PMID: 26918536482585810.1111/ele.12582)
Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006). (PMID: 1673865810.1038/nature04742)
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003). (PMID: 1456900824069210.1073/pnas.2235465100)
Lamy, T. et al. Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology 100, e02719 (2019).
Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013). (PMID: 2334694710.1111/ele.12073)
Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017). (PMID: 29067791684952210.1111/ele.12861)
Gilbert, B. et al. Climate and local environment structure asynchrony and the stability of primary production in grasslands. Glob. Ecol. Biogeogr. 29, 1177–1188 (2020). (PMID: 10.1111/geb.13094)
Zhang, Y., Loreau, M., He, N., Zhang, G. & Han, X. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Funct. Ecol. 31, 1637–1646 (2017). (PMID: 28867865557581810.1111/1365-2435.12850)
Hector, A. et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220 (2010). (PMID: 2083644210.1890/09-1162.1)
Mori, A. S., Isbell, F. & Seidl, R. beta-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evolution 33, 549–564 (2018). (PMID: 10.1016/j.tree.2018.04.012)
Zhang, Y. H. et al. Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecol. Lett. 22, 563–571 (2019). (PMID: 30632243642005010.1111/ele.13212)
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evolution 5, 63–73 (2013).
Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–225 (1972).
Grace, J. B. et al. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3, art73 (2012).
Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compenatory effects in the inner Mongolia grassland. Nature 431, 181–184 (2004). (PMID: 1535663010.1038/nature02850)
Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–353 (1996). (PMID: 10.2307/2265614)
Polley, H. W., Isbell, F. I. & Wilsey, B. J. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122, 1275–1282 (2013). (PMID: 10.1111/j.1600-0706.2013.00338.x)
Majekova, M., de Bello, F., Dolezal, J. & Leps, J. Plant functional traits as determinants of population stability. Ecology 95, 2369–2374 (2014). (PMID: 10.1890/13-1880.1)
Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013). (PMID: 23818582371809810.1073/pnas.1310880110)
de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013). (PMID: 2343818910.1111/ele.12088)
Oesterheld, M. & McNaughton, S. J. Herbivory in terrestrial ecosystems, in Methods in ecosystem science (eds Sala, O. E., Jackson, R. B., Mooney, H. A. & Howarth, R. W.) 151–157 (Springer, New York, 2000).
Tuomisto, H. An updated consumer’s guide to evenness and related indices. Oikos 121, 1203–1218 (2012). (PMID: 10.1111/j.1600-0706.2011.19897.x)
Jost, L. et al. Partitioning diversity for conservation analyses. Diversity Distrib. 16, 65–76 (2010). (PMID: 10.1111/j.1472-4642.2009.00626.x)
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (PMID: 10.1002/j.1538-7305.1948.tb01338.x)
Pielou, E. C. Measurement of Diversity in different types of biological collections. J. Theor. Biol. 13, 131-& (1966). (PMID: 10.1016/0022-5193(66)90013-0)
Simpson, E. H. Measurement of diversity. Nature 163, 688–688 (1949). (PMID: 10.1038/163688a0)
Olszewski, T. D. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104, 377–387 (2004). (PMID: 10.1111/j.0030-1299.2004.12519.x)
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003). (PMID: 10.1111/j.1654-1103.2003.tb02228.x)
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005). (PMID: 10.1002/joc.1276)
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/ (2013).
Pinheiro, J. C. & Bates, D. M. in Mixed-Effects Models in S and S-Plus (Spinger, New York, 2000).
Trikalinos, T. A. & Olkin, I. Meta-analysis of effect sizes reported at multiple time points: a multivariate approach. Clin. Trials 9, 610–620 (2012). (PMID: 2287254610.1177/1740774512453218)
Hedges, L. V. & Olkin, I. Statistical Methods For Meta-analysis (Academic, 1985).
Lefcheck, J. S. PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016). (PMID: 10.1111/2041-210X.12512)
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010). (PMID: 10.18637/jss.v036.i03)
Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008). (PMID: 1859818810.1086/589746)
Entry Date(s):
Date Created: 20201024 Date Completed: 20201109 Latest Revision: 20220418
Update Code:
20240105
PubMed Central ID:
PMC7585434
DOI:
10.1038/s41467-020-19252-4
PMID:
33097736
Czasopismo naukowe
Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities.
Erratum in: Nat Commun. 2021 Jan 21;12(1):630. (PMID: 33479239)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies