Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Marginal and internal fit of feldspathic ceramic CAD/CAM crowns fabricated via different extraoral digitization methods: a micro-computed tomography analysis.

Tytuł:
Marginal and internal fit of feldspathic ceramic CAD/CAM crowns fabricated via different extraoral digitization methods: a micro-computed tomography analysis.
Autorzy:
Oğuz Eİ; Department of Prosthodontics, Faculty of Dentistry, Ankara University, İncitaş Street, Emniyet District, Box 06560, Yenimahalle, Ankara, Turkey. .
Kılıçarslan MA; Department of Prosthodontics, Faculty of Dentistry, Ankara University, İncitaş Street, Emniyet District, Box 06560, Yenimahalle, Ankara, Turkey.
Ocak M; Department of Anatomy, Faculty of Dentistry, Ankara University, Ankara, Turkey.
Bilecenoğlu B; Deparment of Anatomy, Faculty of Medicine, Medipol University, Ankara, Turkey.
Ekici Z; Private Practice, Istanbul, Turkey.
Źródło:
Odontology [Odontology] 2021 Apr; Vol. 109 (2), pp. 440-447. Date of Electronic Publication: 2020 Oct 26.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Tokyo : Springer-Verlag Tokyo, c2001-
MeSH Terms:
Dental Marginal Adaptation*
Dental Prosthesis Design*
Computer-Aided Design ; Crowns ; Dental Porcelain ; X-Ray Microtomography
References:
Blatz MB, Chiche G, Bahat O, Roblee R, Coachman C, Heymann HO. Evolution of aesthetic dentistry. J Dent Res. 2019;98(12):1294–304. (PMID: 31633462)
Guichet DL. Digital workflows in the management of the esthetically discriminating patient. Dent Clin North Am. 2019;63(2):331–44. (PMID: 30825994)
Mormann WH. The evolution of the CEREC system. J Am Dent Assoc. 2006;137(Suppl):7S-13S. (PMID: 16950932)
Vecsei B, Joos-Kovacs G, Borbely J, Hermann P. Comparison of the accuracy of direct and indirect three-dimensional digitizing processes for CAD/CAM systems: an in vitro study. J Prosthodont Res. 2017;61(2):177–84. (PMID: 27461088)
Güth J-F, Keul C, Stimmelmayr M, Beuer F, Edelhoff D. Accuracy of digital models obtained by direct and indirect data capturing. Clin Oral Invest. 2013;17(4):1201–8.
Tabesh R, Dudley J. A Comparison of marginal gaps of all-ceramic crowns constructed from scanned impressions and models. Int J Prosthodont. 2018;31(1):71–3. (PMID: 29166420)
Marsango V, Bollero R, D’Ovidio N, Miranda M, Bollero P, Barlattani A Jr. Digital work-flow. Oral Implantol (Rome). 2014;7(1):20–4.
Christensen GJ. In-office CAD/CAM milling of restorations: the future? J Am Dent Assoc. 2008;139(1):83–58. (PMID: 18167390)
Lee WS, Kim WC, Kim HY, Kim WT, Kim JH. Evaluation of different approaches for using a laser scanner in digitization of dental impressions. J Adv Prosthodont. 2014;6(1):22–9. (PMID: 246052023942523)
Kenyon BJ, Hagge MS, Leknius C, Daniels WC, Weed ST. Dimensional accuracy of 7 die materials. J Prosthodont. 2005;14(1):25–31. (PMID: 15733132)
Ceyhan JA, Johnson GH, Lepe X, Phillips KM. A clinical study comparing the three-dimensional accuracy of a working die generated from two dual-arch trays and a complete-arch custom tray. J Prosthet Dent. 2003;90(3):228–34. (PMID: 12942055)
Price RB, Gerrow JD, Sutow EJ, MacSween R. The dimensional accuracy of 12 impression material and die stone combinations. Int J Prosthodont. 1991;4(2):169–74. (PMID: 1781880)
Alfaro DP, Ruse ND, Carvalho RM, Wyatt CC. Assessment of the internal fit of lithium disilicate crowns using micro-CT. J Prosthodont. 2015;24(5):381–6. (PMID: 25753858)
Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989;62(4):405–8. (PMID: 2685240)
Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent. 2007;98(5):389–404. (PMID: 18021828)
Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater. 2015;31(6):603–23. (PMID: 25842099)
Malaguti G, Rossi R, Marziali B, Esposito A, Bruno G, Dariol C, Dl FA. In vitro evaluation of prosthodontic impression on natural dentition: a comparison between traditional and digital techniques. Oral Implantol (Rome). 2016;9:21–7.
Gressler May L, Kelly JR, Bottino MA, Hill T. Influence of the resin cement thickness on the fatigue failure loads of CAD/CAM feldspathic crowns. Dent Mater. 2015;31(8):895–900. (PMID: 26003231)
Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent. 2014;112(3):555–60. (PMID: 24630399)
Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Oliver-Parra R. Marginal adaptation of zirconium dioxide copings: influence of the CAD/CAM system and the finish line design. J Prosthet Dent. 2014;112(2):155–62. (PMID: 24445027)
Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont. 2017;26(7):581–6. (PMID: 26855068)
McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971;131(3):107–11. (PMID: 5283545)
Al Hamad KQ, Al Rashdan BA, Al Omari WM, Baba NZ. Comparison of the fit of lithium disilicate crowns made from conventional, digital, or conventional/digital techniques. J Prosthodont. 2019;28(2):e580–6. (PMID: 30091168)
Praca L, Pekam FC, Rego RO, Radermacher K, Wolfart S, Marotti J. Accuracy of single crowns fabricated from ultrasound digital impressions. Dent Mater. 2018;34(11):e280–8. (PMID: 30268677)
Liang S, Yuan F, Luo X, Yu Z, Tang Z. Digital evaluation of absolute marginal discrepancy: a comparison of ceramic crowns fabricated with conventional and digital techniques. J Prosthet Dent. 2018;120(4):525–9. (PMID: 29627209)
Shimizu S, Shinya A, Kuroda S, Gomi H. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses. Dent Mater J. 2017;36(4):402–7. (PMID: 28302948)
Alharbi N, Alharbi S, Cuijpers V, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res. 2018;62(2):218–26. (PMID: 29032176)
Kim JH, Jeong JH, Lee JH, Cho HW. Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT. J Prosthet Dent. 2016;116(4):551–7. (PMID: 27422237)
Mostafa NZ, Ruse ND, Ford NL, Carvalho RM, Wyatt CCL. Marginal fit of lithium disilicate crowns fabricated using conventional and digital methodology: a three-dimensional analysis. J Prosthodont. 2018;27(2):145–52. (PMID: 28833920)
Peroz I, Mitsas T, Erdelt K, Kopsahilis N. Marginal adaptation of lithium disilicate ceramic crowns cemented with three different resin cements. Clin Oral Invest. 2019;23(1):315–20.
Contrepois M, Soenen A, Bartala M, Laviole O. Marginal adaptation of ceramic crowns: a systematic review. J Prosthet Dent. 2013;110(6):447–54. (PMID: 24120071)
Carbajal Mejia JB, Wakabayashi K, Nakamura T, Yatani H. Influence of abutment tooth geometry on the accuracy of conventional and digital methods of obtaining dental impressions. J Prosthet Dent. 2017;118(3):392–9. (PMID: 28222873)
Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 5th ed. St Louis: Mosby Elsevier; 2016. p. 184–208.
Bohner LOL, De Luca CG, Marcio BS, Lagana DC, Sesma N, Tortamano NP. Computer-aided analysis of digital dental impressions obtained from intraoral and extraoral scanners. J Prosthet Dent. 2017;118(5):617–23. (PMID: 28385434)
Persson AS, Oden A, Andersson M, Sandborgh-Englund G. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness. Dent Mater. 2009;25(7):929–36. (PMID: 19264353)
Su TS, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: an in-vitro study. J Prosthodont Res. 2015;59(4):236–42. (PMID: 26211702)
Kim SB, Kim NH, Kim JH, Moon HS. Evaluation of the fit of metal copings fabricated using stereolithography. J Prosthet Dent. 2018;120(5):693–8. (PMID: 29807735)
Ahlholm P, Sipila K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: a review. J Prosthodont. 2018;27(1):35–41. (PMID: 27483210)
Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont. 1997;10(5):478–84. (PMID: 9495168)
Karlsson S. The fit of Procera titanium crowns. An in vitro and clinical study. Acta Odontol Scand. 1993;51(3):129–34. (PMID: 8342403)
May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater. 2012;28(8):e99-109. (PMID: 22595741)
Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dent Mater. 1996;12(4):245–9. (PMID: 9002842)
Borba M, Cesar PF, Griggs JA, Della BA. Adaptation of all-ceramic fixed partial dentures. Dent Mater. 2011;27(11):1119–26. (PMID: 219205953189283)
Contributed Indexing:
Keywords: CAD/CAM; Ceramic crowns; Internal adaptation; Marginal adaptation; Micro-CT
Substance Nomenclature:
12001-21-7 (Dental Porcelain)
Entry Date(s):
Date Created: 20201026 Date Completed: 20210316 Latest Revision: 20210316
Update Code:
20240105
DOI:
10.1007/s10266-020-00560-6
PMID:
33104952
Czasopismo naukowe
The aim of this study was to compare the fit of feldspathic ceramic crowns fabricated via 3 different extraoral digitizing methods. Twelve maxillary first premolars were prepared and 36 single crowns were fabricated via 3 extraoral digitizing methods using a laboratory scanner (n = 12): (1) scanning the typodont (ST [control] group); (2) scanning the impression (SI group); (3) scanning the stone cast (SC group). Micro-computed tomography was used to calculate two-dimensional marginal-internal gap and the three-dimensional volumetric gap between the crowns and their corresponding dies. The measured gaps were divided into 6 location categories as follows: marginal gap (MG), finish line gap (FLG), axial wall gap (AWG), cuspal gap (CG), proximal transition gap (PTG), and central fossa gap (CFG). The correlation between each of the 3 extraoral digitizing methods and the adaptation status of the crown margins were also evaluated. The Wilcoxon signed-rank test, Spearman's rank test, and Chi-square test were used for data analysis (α = 0.05). The marginal gaps in the ST, SI, and SC groups differed significantly (24, 198 and 117.6 µm, respectively) (p < 0.05). Significant differences were found between the groups with regard to internal gap measurements, with SI representing higher gap measurements at FLG, PTG and CFG locations (p < 0.05). 3D volumetric gap measurements did not differ significantly (p > 0.05). Under-extended margins observed in the SI and SC groups were correlated with the digitizing method (Cramer's V-square: 0.14). When performing extraoral digitalization, clinicians should choose to scan the stone cast as scanning the stone cast resulted in better internal and marginal fit compared to scanning the impression.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies