Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Przeglądasz jako GOŚĆ
Tytuł pozycji:

Enrofloxacin and its major metabolite ciprofloxacin in green sea turtles (Chelonia mydas): An explorative pharmacokinetic study.

Tytuł :
Enrofloxacin and its major metabolite ciprofloxacin in green sea turtles (Chelonia mydas): An explorative pharmacokinetic study.
Autorzy :
Poapolathep S; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
Chomcheun T; Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand.
Giorgi M; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy.; PhD school of Veterinary Medicine, Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
Jualaong S; Eastern Marine and Coastal Resources Research and Development Center, Rayong, Thailand.
Klangkaew N; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
Phaochoosak N; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
Udomkusonsri P; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
Marin P; Department of Pharmacology, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain.
Poapolathep A; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand.
Pokaż więcej
Źródło :
Journal of veterinary pharmacology and therapeutics [J Vet Pharmacol Ther] 2021 Jul; Vol. 44 (4), pp. 575-582. Date of Electronic Publication: 2020 Oct 26.
Typ publikacji :
Journal Article
Język :
English
Imprint Name(s) :
Original Publication: Oxford, Blackwell Scientific Publications.
References :
Brentnall, C., Cheng, Z., McKellar, Q. A., & Lees, P. (2013). Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves. Research in Veterinary Sciences, 94, 687-694. https://doi.org/10.1016/j.rvsc.2013.01.012.
Corum, O., Corum, D. D., Altan, F., Er, A., Cetin, G., & Uney, K. (2019). Pharmacokinetics of intravenous and intramuscular danofloxacin in red-eared slider turtles (Trachemys scripta elegans). Journal of Veterinary Medical Science., 81, 753-757. https://doi.org/10.1292/jvms.18-0609.
Giguere, S., & Dowling, P. M. (2013). Fluoroquinolones. In S. Giguere, J. F. Prescott, & P. M. Dowling (Eds). Antimicrobial therapy in veterinary medicine (pp. 295-314). : Wiley Blackwell.
Giorgi, M., Rota, S., Giorgi, T., Capasso, M., & Briganti, A. (2013). Blood concentrations of enrofloxacin and the metabolite ciprofloxacin in yellow-bellied slider turtles (Trachemys scripta scripta) after a single intracoelomic injection of enrofloxacin. Journal of Exotic Pet Medicine, 22, 192-199. https://doi.org/10.1053/j.jepm.2013.05.009.
Griffioen, J. A., Lewbart, G. A., & Papich, M. G. (2020). Population pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in clinically diseased or injured Eastern box turtles (Terrapene carolina carolina), yellow-bellied sliders (Trachemys scripta scripta), and river cooters (Pseudemys concinna). Journal of Veterinary Pharmacology and Therapeutics, 43, 222-230.
Hunter, R. P., Koch, D. E., Coke, R. L., Carpenter, J. W., & Isaza, R. (2007). Identification and comparison of marbofloxacin metabolites from the plasma of ball pythons (Python regius) and blue and gold macaws (Ara ararauna). Journal of Veterinary Pharmacology and Therapeutics, 30, 257-262. https://doi.org/10.1111/j.1365-2885.2007.00845.x.
IUCN (2019). The ICUN red list of threatened species. Retrieved from http://www.iucnredlist.org/resources/summary-statistics (access 240/06/2020)).
Jacobson, E. R. (1993). Implications of infectious diseases for captive propagation and introduction programs of threatened/endangered reptiles. Journal of Zoo and Wildlife Medicine, 24, 245-255.
Jacobson, E., Gronwall, R., Maxwell, L., Merrit, K., & Harman, G. (2005). Plasma concentrations of enrofloxacin after single dose oral administration in loggerhead sea turtles (Caretta caretta). Journal of Zoo and Wildlife Medicine, 36, 628-634. https://doi.org/10.1638/04093.1.
Julious, S. A., & Debarnot, C. A. M. (2000). Why are pharmacokinetic data summarized by arithmetic means? Journal of Biopharmaceutical Statistics, 10, 55-71. https://doi.org/10.1081/BIP-100101013.
Küng, K., Riond, J. L., Wolffram, S., & Wanner, M. (1993). Comparison of an HPLC and bioassay method to determine antimicrobial concentrations after intravenous and oral administration of enrofloxacin in four dogs. Research in Veterinary Sciences, 54, 247-248. https://doi.org/10.1016/0034-5288(93)90065-N.
Lai, O. R., Marín, P., Laricchiuta, P., Marzano, G., Crescenzo, G., & Escudero, E. (2009). Pharmacokinetics of marbofloxacin in Loggerhead sea turtles (Caretta caretta) after single intravenous and intramuscular doses -. Journal of Zoo and Wildlife Medicine, 40, 501-507. https://doi.org/10.1638/2008-0210.1.
Liu, P., Muller, M., & Derendorf, H. (2002). Rational dosing of antibiotics: The use of plasma concentrations versus tissue concentrations. International Journal of Antimicrobial Agents, 17, 383-387. https://doi.org/10.1016/S0924-8579(02)00024-9.
Lizodo, M., Pons, M., Gallardo, M., & Estelrich, J. (1997). Physicochemical properties of enrofloxacin. Journal of Pharmaceutical and Biomedical Analysis, 15, 1845-1849. https://doi.org/10.1016/S0731-7085(96)02033-X.
Marín, P., Bayón, A., Fernández-Varón, E., Escudero, E., Clavel, C., Almela, R., & Carceles, C. M. (2008). Pharmacokinetics of danofloxacin after single dose intravenous, intramuscular and subcutaneous administration to loggerhead turtles Caretta caretta. Diseases of Aquatic Organisms, 82, 231-238. https://doi.org/10.3354/dao01987.
Marín, P., Lai, O. R., Laricchiuta, P., Marzano, G., Bello, A. D., Carceles, C. M., & Crescenzo, G. (2009). Pharmacokinetics of marbofloxacin after a single oral dose to loggerhead sea turtles (Caretta caretta). Research in Veterinary Science, 87, 284-286. https://doi.org/10.1016/j.rvsc.2009.03.012.
Martelli, P., Lai, O. R., Krishnasamy, K., Langelet, E., Marín, P., Laricchiuta, P., & Crescenzo, G. (2009). Pharmacokinetic behavior of enrofloxacin in Estuarine crocodile (Crocodylus porosus) after single intravenous, intramuscular, and oral doses. Journal of Zoo and Wildlife Medicine, 40, 696-704. https://doi.org/10.1638/2009-0106.1.
Nielsen, E. I., & Friberg, L. E. (2013). Pharmacokinetic-pharmacodynamic modelling of antibacterial drugs. Pharmacological Review, 65, 1053-1090. https://doi.org/10.1124/pr.111.005769.
Poapolathep, A., Giorgi, M., Chaiyabutr, N., Chokejaroenrat, C., Klangkaew, N., Phaochoosak, N., & Poapolathep, A.(2020). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in freshwater crocodiles (Crocodylus siamensis) after intravenous and intramuscular administration. Journal of Veterinary Pharmacology and Therapeutics, 43, 19-25. https://doi.org/10.1111/jvp.12791.
Power, J. (1990). Statistical analysis of pharmacokinetic data. Journal of Veterinary Pharmacology and Therapeutics, 13, 113-120. https://doi.org/10.1111/j.1365-2885.1990.tb00758.x.
Prescott, J. F., & Yielding, K. M. (1990). In vitro susceptibility of selected veterinary bacterial pathogens to ciprofloxacin, enrofloxacin and norfloxacin. Canadian Journal of Veterinary Research, 54, 195-197.
Prezant, R. M., Isaza, R., & Jacobson, E. R. (1994). Plasma concentrations and disposition kinetics of enrofloxacin in Gopher tortoises (Gopherus Polyphemus). Journal of Zoo and Wildlife Medicine, 25, 82-87.
Raphael, B. L., Papich, M., & Cook, R. A. (1994). Pharmacokinetics of enrofloxacin after a single intramuscular injection in Indian star tortoises (Geochelone elegans). Journal of Zoo and Wildlife Medicine, 25, 88-94. https://doi.org/10.2307/20095338.
Rasmussen, C., Allender, M. C., Phillips, C. A., Byrd, J., Lloyd, T., & Maddox, C. (2017). Multi-drug resistance patterns of enteric bacteria in two populations of free-ranging Eastern box turtles. (Terrapene Carolina Carolina). Journal of Zoo and Wildlife Medicine, 48, 708-715. https://doi.org/10.1638/2016-0194.1.
Ruennarong, N., Wongpanit, K., Sakulthaew, C., Giorgi, M., Kumagai, S., Poapolathep, A. , & Poapolathep, S.(2016). Dispositions of enrofloxacin and its major metabolite ciprofloxacin in Thai swamp buffaloes. Journal of Veterinary Medical Sciences, 78, 397-403. https://doi.org/10.1292/jvms.15-0464.
Salvadori, M., De Vito, V., Owen, H., & Giorgi, M. (2015). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intracoelomic administration in tortoises (Testudo hermanni). Israel Journal of Veterinary Medicine, 70, 45-48. http://www.ijvm.org.il/node/409.
Toutain, P. L., & Bouqsuet-Melou, A. (2004). Plasma terminal half-life. Journal of Veterinary Pharmacology and Therapeutics, 27, 427-439. https://doi.org/10.1111/j.1365-2885.2004.00600.x.
Toutain, P.-L., Bousquet-Mélou, A., Damborg, P., Ferran, A. A., Mevius, D., Pelligand, L., Veldman, K. T., & Lees, P. (2017). En route towards european clinical breakpoints for veterinary antimicrobial susceptibility testing: a position paper explaining the VetCAST Approach. Frontier Microbiology, 8, 2344. https://doi.org/10.3389/fmicb.2017.02344.
Toutain, P. L., Bousquet-Mélou, A., & Martinez, M. (2007). AUC/MIC: A PK/PD index for antibiotics with a time dimension or simply a dimensionless scoring factor? Journal of Antimicrobial Chemotherapy, 60, 1185-1188. https://doi.org/10.1093/jac/dkm360.
Toutain, P. L., Del Castillo, J. R. E., & Bousquet-Melou, A. (2002). The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Research in Veterinary Science, 73, 105-114. https://doi.org/10.1016/S0034-5288(02)00039-5.
Trouchon, T., & Lefebvre, S. (2016). A review of enrofloxacin in veterinary use. Open Journal of Veterinary Medicine, 6, 40-58.
Vercelli, C., De Vito, V., Salvadori, M., Barbero, R., Re, G., Genero, M. S., & Giorgi, M. (2016). Blood concentrations of marbofloxacin and its in vivo effect in yellow-bellied slider turtles (Trachemys scripta scripta) after a single intracoelomic injection at 3 dose rates. Journal of Exotic Pet Medicine, 25, 295-304. https://doi.org/10.1053/j.jepm.2016.06.011.
Walker, R. D. (2000). Fluoroquinolone. In J. F. Prescott, J. D. Baggot, & R. D. Walker (Eds.), Antimicrobial Therapy in Veterinary Medicine, 3rd ed. (pp. 315-338). Iowa State University Press.
Wright, D. H., Brown, G. H., Peterson, M. L., & Rotschafer, J. C. (2000). Application of fluoroquinolone pharmacodynamics. Journal of Antimicrobial Chemotherapy, 46, 669-683. https://doi.org/10.1093/jac/46.5.669.
Grant Information :
Kasetsart University Research and Development Institute
Contributed Indexing :
Keywords: ciprofloxacin; enrofloxacin; green sea turtles; pharmacokinetics
Entry Date(s) :
Date Created: 20201027 Latest Revision: 20210712
Update Code :
20210712
DOI :
10.1111/jvp.12922
PMID :
33107624
Czasopismo naukowe
The present study aimed to assess the pharmacokinetic features of enrofloxacin (ENR) and its major metabolite, ciprofloxacin (CIP) in green sea turtles (Chelonia mydas) after single intravenous (i.v.) and intramuscular (i.m.) administration at two dosages of 5 and 7.5 mg/kg body weight (b.w.). The study used 10 animals randomly divided into equal groups. Blood samples were collected at assigned times up to 168 hr. The concentrations of ENR and CIP in turtle plasma were quantified by a validated high-performance liquid chromatography equipped with fluorescence detector (HPLC-FLD). The concentration of ENR in the experimental turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The concentrations of ENR in the plasma were quantified up to 144 hr after i.v. and i.m. administrations at dosages of 5 and 7.5 mg/kg b.w., whereas CIP was quantified up to 96 and 144 hr, respectively. The elimination half-life values of ENR were 38.7 and 50.4 hr at dose rates of 5 and 7.5 mg/kg b.w. after i.v. administration, whereas CIP was 33.6 and 22.6 hr, respectively. The maximum concentration (C max ) values of ENR were 2.07 and 2.59 μg/ml at dose rates of 5 and 7.5 mg/kg b.w., respectively. The value of area under the curve from 0 to 24 hr (AUC 0-24 )/minimum inhibitory concentration (MIC) ratio of ENR was >125 for bacteria with MIC of 0.12 and 0.13 μg/ml after the administration of 5 mg/kg by i.m. and i.v. administration, respectively. Based on the pharmacokinetic data, susceptibility break-point and pharmacokinetic (PK)/pharmacodynamic (PD) indices, i.m. single administration of ENR at a dosage of 5 mg/kg b.w. might be clinically appropriate for treatment of susceptible bacteria in green sea turtles (Chelonia mydas).
(© 2020 John Wiley & Sons Ltd.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies