Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Formation of HERV-K and HERV-Fc1 Envelope Family Members is Suppressed on Transcriptional and Translational Level.

Tytuł:
Formation of HERV-K and HERV-Fc1 Envelope Family Members is Suppressed on Transcriptional and Translational Level.
Autorzy:
Gröger V; Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
Wieland L; Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.; Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.
Naumann M; Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
Meinecke AC; Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
Meinhardt B; Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.; Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.
Rossner S; Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany.
Ihling C; Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, 06120 Halle, Germany.
Emmer A; Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.
Staege MS; Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany.
Cynis H; Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany.
Źródło:
International journal of molecular sciences [Int J Mol Sci] 2020 Oct 23; Vol. 21 (21). Date of Electronic Publication: 2020 Oct 23.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, [2000-
MeSH Terms:
Endogenous Retroviruses/*metabolism
Membrane Proteins/*genetics
Membrane Proteins/*metabolism
Superantigens/*genetics
Superantigens/*metabolism
Viral Envelope Proteins/*genetics
Viral Envelope Proteins/*metabolism
A549 Cells ; Animals ; COS Cells ; Cell Line ; Cell-Free System ; Chlorocebus aethiops ; Endogenous Retroviruses/chemistry ; Endogenous Retroviruses/genetics ; Endoplasmic Reticulum Chaperone BiP ; Gene Expression Regulation ; Glycosylation ; HEK293 Cells ; Humans ; Membrane Proteins/chemistry ; Molecular Conformation ; Nucleic Acid Conformation ; Open Reading Frames ; Protein Biosynthesis ; RNA, Messenger/chemistry ; Superantigens/chemistry ; Transcription, Genetic ; Viral Envelope Proteins/chemistry
References:
J Neurol Sci. 2017 Sep 15;380:151-163. (PMID: 28870557)
J Virol. 2014 Jun;88(12):6896-905. (PMID: 24696495)
Nature. 1970 Aug 15;227(5259):680-5. (PMID: 5432063)
Nat Rev Microbiol. 2020 Oct;18(10):559-570. (PMID: 32533130)
Biotechniques. 2001 Dec;31(6):1286, 1288, 1290, passim. (PMID: 11768657)
Genome Biol. 2001;2(6):REVIEWS1017. (PMID: 11423012)
Retrovirology. 2014 Jan 28;11:10. (PMID: 24472118)
Retrovirology. 2005 Aug 10;2:50. (PMID: 16092962)
Cell Host Microbe. 2020 Aug 12;28(2):306-312.e6. (PMID: 32533923)
Genomics. 2003 Feb;81(2):149-56. (PMID: 12620392)
Virology. 2004 Sep 15;327(1):93-110. (PMID: 15327901)
Genomics. 2005 Sep;86(3):337-41. (PMID: 16024218)
Retrovirology. 2018 Aug 28;15(1):59. (PMID: 30153831)
J Biol Chem. 2018 Nov 16;293(46):17929-17940. (PMID: 30275015)
Cell. 1981 Jan;23(1):175-82. (PMID: 6260373)
Clin Exp Immunol. 2017 Jul;189(1):127-131. (PMID: 28324619)
J Surg Res. 2019 Aug;240:145-155. (PMID: 30933828)
Crit Rev Microbiol. 2018 Nov;44(6):715-738. (PMID: 30318978)
Front Microbiol. 2018 Dec 20;9:3171. (PMID: 30619227)
Front Microbiol. 2018 Feb 13;9:211. (PMID: 29487589)
J Natl Cancer Inst. 1973 Nov;51(5):1417-23. (PMID: 4357758)
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. (PMID: 12824337)
Virology. 2008 Feb 5;371(1):216-25. (PMID: 18076964)
Mol Biol Rep. 2019 Apr;46(2):1885-1893. (PMID: 30707417)
Cytogenet Genome Res. 2005;110(1-4):318-32. (PMID: 16093684)
Int J Androl. 1987 Feb;10(1):105-13. (PMID: 3034787)
Front Microbiol. 2018 Mar 14;9:462. (PMID: 29593697)
J Virol. 2005 Dec;79(24):15573-7. (PMID: 16306628)
Clin Exp Immunol. 2002 Apr;128(1):75-82. (PMID: 11982593)
J Immunol. 1989 Nov 15;143(10):3222-9. (PMID: 2809198)
J Gen Virol. 1977 Jul;36(1):59-74. (PMID: 886304)
Int Rev Immunol. 2010 Aug;29(4):351-70. (PMID: 20635879)
Immunity. 2001 Oct;15(4):579-89. (PMID: 11672540)
Front Microbiol. 2018 Feb 20;9:265. (PMID: 29515547)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Sci Signal. 2018 Sep 04;11(546):. (PMID: 30181241)
Nat Rev Mol Cell Biol. 2018 Jan;19(1):20-30. (PMID: 29018283)
Immunol Res. 2016 Feb;64(1):55-63. (PMID: 26091722)
J Virol. 2012 Apr;86(7):3713-22. (PMID: 22278236)
Mult Scler. 2008 Nov;14(9):1175-80. (PMID: 18701576)
Cell. 1982 Sep;30(2):415-25. (PMID: 6291768)
Virology. 2010 Sep 15;405(1):214-24. (PMID: 20591459)
Ann Neurol. 2001 Oct;50(4):434-42. (PMID: 11601494)
J Neuroimmune Pharmacol. 2010 Sep;5(3):326-35. (PMID: 20422298)
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4894-9. (PMID: 15044706)
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2326-34. (PMID: 27001843)
Curr Biol. 2001 Oct 2;11(19):1531-5. (PMID: 11591322)
Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6117-E6125. (PMID: 27671647)
Nat Struct Biol. 2003 Jul;10(7):520-6. (PMID: 12794637)
PLoS One. 2013 Apr 25;8(4):e62090. (PMID: 23634223)
Virology. 2003 Jul 20;312(1):159-68. (PMID: 12890629)
J Virol. 2009 Dec;83(24):12790-800. (PMID: 19812154)
J Virol. 1999 Nov;73(11):9187-95. (PMID: 10516026)
PLoS One. 2020 Feb 13;15(2):e0228730. (PMID: 32053646)
J Virol. 2000 Apr;74(7):3321-9. (PMID: 10708449)
PLoS Pathog. 2017 Jun 26;13(6):e1006451. (PMID: 28651004)
Immunity. 2001 Oct;15(4):591-601. (PMID: 11672541)
Grant Information:
ZS/2018/12/96228 European Regional Development Fund; ZS/2018/12/96169 European Regional Development Fund
Contributed Indexing:
Keywords: codon usage; expression; human endogenous retroviruses; transcription; translation
Substance Nomenclature:
0 (ERVK-18 protein, human)
0 (Endoplasmic Reticulum Chaperone BiP)
0 (HSPA5 protein, human)
0 (Membrane Proteins)
0 (RNA, Messenger)
0 (Superantigens)
0 (Viral Envelope Proteins)
Entry Date(s):
Date Created: 20201029 Date Completed: 20210301 Latest Revision: 20211204
Update Code:
20240104
PubMed Central ID:
PMC7660216
DOI:
10.3390/ijms21217855
PMID:
33113941
Czasopismo naukowe
The human genome comprises 8% sequences of retroviral origin, so-called human endogenous retroviruses (HERVs). Most of these proviral sequences are defective, but some possess open reading frames. They can lead to the formation of viral transcripts, when activated by intrinsic and extrinsic factors. HERVs are thought to play a pathological role in inflammatory diseases and cancer. Since the consequences of activated proviral sequences in the human body are largely unexplored, selected envelope proteins of human endogenous retroviruses associated with inflammatory diseases, namely HERV-K18, HERV-K113, and HERV-Fc1, were investigated in the present study. A formation of glycosylated envelope proteins was demonstrated in different mammalian cell lines. Nevertheless, protein maturation seemed to be incomplete as no transport to the plasma membrane was observed. Instead, the proteins remained in the ER where they induced the expression of genes involved in unfolded protein response, such as HSPA5 and sXBP1 . Furthermore, low expression levels of native envelope proteins were increased by codon optimization. Cell-free expression systems showed that both the transcriptional and translational level is affected. By generating different codon-optimized variants of HERV-K113 envelope, the influence of single rare t-RNA pools in certain cell lines was demonstrated. The mRNA secondary structure also appears to play an important role in the translation of the tested viral envelope proteins. In summary, the formation of certain HERV proteins is basically possible. However, their complete maturation and thus full biologic activity seems to depend on additional factors that might be disease-specific and await elucidation in the future.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies