Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

MicroRNA-20a-5p suppresses tumor angiogenesis of non-small cell lung cancer through RRM2-mediated PI3K/Akt signaling pathway.

Tytuł:
MicroRNA-20a-5p suppresses tumor angiogenesis of non-small cell lung cancer through RRM2-mediated PI3K/Akt signaling pathway.
Autorzy:
Han J; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
Hu J; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China. .
Sun F; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
Bian H; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
Tang B; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
Fang X; Respiratory and Critical Illness Ward 1, Henan Chest Hospital, No. 1, Weiwu Road, Zhengzhou, 450000, Henan, China.
Źródło:
Molecular and cellular biochemistry [Mol Cell Biochem] 2021 Feb; Vol. 476 (2), pp. 689-698. Date of Electronic Publication: 2020 Oct 30.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
MeSH Terms:
Carcinoma, Non-Small-Cell Lung/*blood supply
Lung Neoplasms/*blood supply
MicroRNAs/*metabolism
Phosphatidylinositol 3-Kinases/*metabolism
Proto-Oncogene Proteins c-akt/*metabolism
Ribonucleoside Diphosphate Reductase/*metabolism
Animals ; Carcinoma, Non-Small-Cell Lung/genetics ; Carcinoma, Non-Small-Cell Lung/pathology ; Cell Line, Tumor ; Cell Movement/physiology ; Cell Proliferation/physiology ; Computational Biology/methods ; Databases, Genetic ; Endothelial Cells/metabolism ; Female ; Humans ; Lung Neoplasms/genetics ; Lung Neoplasms/pathology ; Male ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; MicroRNAs/genetics ; Middle Aged ; Neovascularization, Pathologic/genetics ; Neovascularization, Pathologic/metabolism ; Neovascularization, Pathologic/pathology ; Ribonucleoside Diphosphate Reductase/genetics ; Signal Transduction
References:
Yang D, Liu Y, Bai C, Wang X, Powell CA (2020) Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Lett 468:82–87. https://doi.org/10.1016/j.canlet.2019.10.009. (PMID: 10.1016/j.canlet.2019.10.00931600530)
Wang S, Zimmermann S, Parikh K, Mansfield AS, Adjei AA (2019) Current diagnosis and management of small-cell lung cancer. Mayo Clin Proc 94:1599–1622. https://doi.org/10.1016/j.mayocp.2019.01.034. (PMID: 10.1016/j.mayocp.2019.01.03431378235)
Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564. https://doi.org/10.1126/science.1203543. (PMID: 10.1126/science.1203543)
Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125. https://doi.org/10.1016/j.pbi.2004.01.006. (PMID: 10.1016/j.pbi.2004.01.00615003210)
Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246. (PMID: 10.1038/nrd.2016.24628209991)
Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer–a brief overview. Adv Biol Regul 57:1–9. https://doi.org/10.1016/j.jbior.2014.09.013. (PMID: 10.1016/j.jbior.2014.09.01325294678)
Pandima Devi K, Rajavel T, Daglia M, Nabavi SF, Bishayee A, Nabavi SM (2017) Targeting miRNAs by polyphenols: novel therapeutic strategy for cancer. Semin Cancer Biol 46:146–157. https://doi.org/10.1016/j.semcancer.2017.02.001. (PMID: 10.1016/j.semcancer.2017.02.00128185862)
Gong ZH, Zhou F, Shi C, Xiang T, Zhou CK, Wang QQ, Jiang YS, Gao SF (2019) miRNA-221 promotes cutaneous squamous cell carcinoma progression by targeting PTEN. Cell Mol Biol Lett 24:9. https://doi.org/10.1186/s11658-018-0131-z. (PMID: 10.1186/s11658-018-0131-z308910726407258)
Xu L, Xu X, Huang H, Ma Z, Zhang S, Niu P, Chen Y, Ping J, Lu P, Yu C, Min L, Chen J, Dai L, Dong S (2018) MiR-1260b promotes the migration and invasion in non-small cell lung cancer via targeting PTPRK. Pathol Res Pract 214:776–783. https://doi.org/10.1016/j.prp.2018.02.002. (PMID: 10.1016/j.prp.2018.02.00229628123)
Zhan S, Wang C, Yin F (2018) MicroRNA-29c inhibits proliferation and promotes apoptosis in non-small cell lung cancer cells by targeting VEGFA. Mol Med Rep 17:6705–6710. https://doi.org/10.3892/mmr.2018.8678. (PMID: 10.3892/mmr.2018.867829512752)
Czarnecka KH, Szmyd B, Baranska M, Kaszkowiak M, Kordiak J, Antczak A, Pastuszak-Lewandoska D, Brzezianska-Lasota E (2019) A Strong decrease in TIMP3 expression mediated by the presence of miR-17 and 20a enables extracellular matrix remodeling in the NSCLC lesion surroundings. Front Oncol 9:1372. https://doi.org/10.3389/fonc.2019.01372. (PMID: 10.3389/fonc.2019.01372319216366923190)
Xu X, Zhu S, Tao Z, Ye S (2018) High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med 7:21–31. https://doi.org/10.1002/cam4.1238. (PMID: 10.1002/cam4.123829266846)
Zhang H, Mao F, Shen T, Luo Q, Ding Z, Qian L, Huang J (2017) Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol Lett 13:669–676. https://doi.org/10.3892/ol.2016.5462. (PMID: 10.3892/ol.2016.546228356944)
Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594. https://doi.org/10.4065/83.5.584. (PMID: 10.4065/83.5.5841845269218452692)
Urman A, Dean Hosgood H (2015) Lung cancer risk, genetic variation, and air pollution. EBioMedicine 2:491–492. https://doi.org/10.1016/j.ebiom.2015.05.007. (PMID: 10.1016/j.ebiom.2015.05.007262888124535288)
Schanne DH, Heitmann J, Guckenberger M, Andratschke NHJ (2019) Evolution of treatment strategies for oligometastatic NSCLC patients—a systematic review of the literature. Cancer Treat Rev 80:101892. https://doi.org/10.1016/j.ctrv.2019.101892. (PMID: 10.1016/j.ctrv.2019.10189231522079)
Wood SL, Pernemalm M, Crosbie PA, Whetton AD (2014) The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev 40:558–566. https://doi.org/10.1016/j.ctrv.2013.10.001. (PMID: 10.1016/j.ctrv.2013.10.00124176790)
Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38:173. https://doi.org/10.1186/s13046-019-1156-5. (PMID: 10.1186/s13046-019-1156-5310233376482513)
Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, Tong TR, Pangeni R, Salgia R, Raz DJ (2019) Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 17:167. https://doi.org/10.1186/s12964-019-0480-x. (PMID: 10.1186/s12964-019-0480-x318429066916027)
Yang F, Shao C, Wei K, Jing X, Qin Z, Shi Y, Shu Y, Shen H (2019) miR-942 promotes tumor migration, invasion, and angiogenesis by regulating EMT via BARX2 in non-small-cell lung cancer. J Cell Physiol 234:23596–23607. https://doi.org/10.1002/jcp.28928. (PMID: 10.1002/jcp.2892831236953)
Wang N, Zhan T, Ke T, Huang X, Ke D, Wang Q, Li H (2014) Increased expression of RRM2 by human papillomavirus E7 oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer 110:1034–1044. https://doi.org/10.1038/bjc.2013.817. (PMID: 10.1038/bjc.2013.817244239253929894)
Zhang K, Hu S, Wu J, Chen L, Lu J, Wang X, Liu X, Zhou B, Yen Y (2009) Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Mol Cancer 8:11. https://doi.org/10.1186/1476-4598-8-11. (PMID: 10.1186/1476-4598-8-11192505522662784)
Chen WX, Yang LG, Xu LY, Cheng L, Qian Q, Sun L, Zhu YL (2019) Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. Biosci Rep. https://doi.org/10.1042/BSR20182062. (PMID: 10.1042/BSR20182062318085216928526)
Zhijun Z, Jingkang H (2017) MicroRNA-520e suppresses non-small-cell lung cancer cell growth by targeting Zbtb7a-mediated Wnt signaling pathway. Biochem Biophys Res Commun 486:49–56. https://doi.org/10.1016/j.bbrc.2017.02.121. (PMID: 10.1016/j.bbrc.2017.02.12128242196)
Li YJ, Ping C, Tang J, Zhang W (2016) MicroRNA-455 suppresses non-small cell lung cancer through targeting ZEB1. Cell Biol Int 40:621–628. https://doi.org/10.1002/cbin.10584. (PMID: 10.1002/cbin.1058426801503)
Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, Zhang Y, Li Z, Lv B, Li H, Liu J (2017) MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol 39:1010428317706215. https://doi.org/10.1177/1010428317706215. (PMID: 10.1177/101042831770621528488541)
Yang W, Bai J, Liu D, Wang S, Zhao N, Che R, Zhang H (2018) MiR-93-5p up-regulation is involved in non-small cell lung cancer cells proliferation and migration and poor prognosis. Gene 647:13–20. https://doi.org/10.1016/j.gene.2018.01.024. (PMID: 10.1016/j.gene.2018.01.02429309884)
Jiang W, He Y, Shi Y, Guo Z, Yang S, Wei K, Pan C, Xia Y, Chen Y (2019) MicroRNA-1204 promotes cell proliferation by regulating PITX1 in non-small-cell lung cancer. Cell Biol Int 43:253–264. https://doi.org/10.1002/cbin.11083. (PMID: 10.1002/cbin.1108330549141)
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V, Ayala de la Pena F (2018) Angiogenic role of miR-20a in breast cancer. PLoS One 13:e0194638. https://doi.org/10.1371/journal.pone.0194638. (PMID: 10.1371/journal.pone.0194638296174045884522)
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X (2019) miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 58:1234–1247. https://doi.org/10.1002/mc.23006. (PMID: 10.1002/mc.2300630883936)
Grant Information:
2018020549 Henan Medical Science and technology project plan
Contributed Indexing:
Keywords: Angiogenesis; MicroRNA-20a; NSCLC; Ribonucleotide reductase regulatory subunit M2
Substance Nomenclature:
0 (MIRN20a microRNA, human)
0 (MicroRNAs)
EC 1.17.4.- (ribonucleotide reductase M2)
EC 1.17.4.1 (Ribonucleoside Diphosphate Reductase)
EC 2.7.11.1 (AKT1 protein, human)
EC 2.7.11.1 (Proto-Oncogene Proteins c-akt)
Entry Date(s):
Date Created: 20201030 Date Completed: 20210719 Latest Revision: 20210719
Update Code:
20240105
DOI:
10.1007/s11010-020-03936-y
PMID:
33125611
Czasopismo naukowe
The current therapeutic strategies for non-small cell lung cancer (NSCLC) are limited and unsatisfactory. MicroRNAs (miRNAs) participate in tumor angiogenesis in NSCLC. The aim of this study was to investigate the role of miR-20a-5p (miR-20a) in human NSCLC metastasis. In the current study, bioinformatics analysis and RT-PCR were performed to examine the expression level of miR-20a in tissues of NSCLC patients and NSCLC cell lines, respectively. Western blot was performed to test the protein levels. Cell proliferation, migration and angiogenesis capacity were tested by 5-ethynyl-29-deoxyuridine (EdU) assay, transwell assay and tube formation assay, respectively. Dual-luciferase reporter assay (DLR) was used to confirm the interaction between miR-20a and paired ribonucleotide reductase regulatory subunit M2 (RRM2). We found that the expression of RRM2 was upregulated, while the expression of miR-20a was downregulated in cancer tissues compared with adjacent tissues in NSCLC patients. We also detected the expression level of RRM2 and miR-20a in NSCLC cell lines, showing A549 cell line exhibited the lowest expression level of miR-20a and highest expression level of RRM2. Overexpressed miR-20a not only dramatically suppressed NSCLC cells proliferation, endothelial cells migration and tube formation in vitro, but also inhibited tumor growth and angiogenesis in vivo. It was demonstrated that miR-20a suppressed NSCLC growth by inhibiting RRM2-mediated PI3K/Akt signaling pathway. These findings indicate that the novel identified miR-20a could function as a tumor suppressor in NSCLC through modulating the RRM2-mediated PI3K/Akt axis, and it could be a valid molecular target for NSCLC treatment.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies