Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Removal of lead ions in an aqueous solution by living and modified Aspergillus niger.

Tytuł:
Removal of lead ions in an aqueous solution by living and modified Aspergillus niger.
Autorzy:
Xu H; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Hao R; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Yang S; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Xu X; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Lu A; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Li Y; The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China.
Źródło:
Water environment research : a research publication of the Water Environment Federation [Water Environ Res] 2021 Jun; Vol. 93 (6), pp. 844-853. Date of Electronic Publication: 2020 Nov 24.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Hoboken, NJ : Wiley Subscription Services on behalf of The Water Environment Foundation
Original Publication: Alexandria, VA : The Federation, c1992-
MeSH Terms:
Aspergillus niger*
Water Pollutants, Chemical*
Adsorption ; Hydrogen-Ion Concentration ; Ions ; Kinetics ; Lead ; Water
References:
Abo-Farha, S. A., Abdel-Aal, A. Y., Ashour, I. A., & Garamon, S. E. (2009). Removal of some heavy metal cations by synthetic resin purolite C100. Journal of Hazardous Materials, 169(1-3), 190-194. https://doi.org/10.1016/j.jhazmat.2009.03.086.
Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243-2257. https://doi.org/10.1016/j.biortech.2005.12.006.
Akar, T., & Tunali, S. (2006). Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresource Technology, 97(15), 1780-1787. https://doi.org/10.1016/j.biortech.2005.09.009.
Amini, M., & Younesi, H. (2009). Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger: Application of response surface methodology to the optimization of process parameters. CLEAN - Soil, Air, Water, 37(10), 776-786. https://doi.org/10.1002/clen.200900090.
Bai, R. S., & Abraham, T. E. (2002). Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224-1236. https://doi.org/10.1016/s0043-1354(01)00330-x.
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029.
Chongad, L. S., Sharma, A., Banerjee, M., & Jain, A. (2016). Synthesis of lead sulfide nanoparticles by chemical precipitation method. Journal of Physics: Conference Series, 755, 012032-1. https://doi.org/10.1088/1742-6596/755/1/012032.
de Oliveira da Mota, I., de Castro, J. A., de Góes Casqueira, R., & de Oliveira Junior, A. G. (2015). Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. Journal of Materials Research and Technology, 4(2), 109-113. https://doi.org/10.1016/j.jmrt.2014.11.004.
Dhankhar, R., & Hooda, A. (2011). Fungal biosorption - An alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5-6), 467-491. https://doi.org/10.1080/09593330.2011.572922.
Din, M. I., Hussain, Z., Mirza, M. L., Shah, A. T., & Athar, M. M. (2014). Adsorption optimization of lead (II) using Saccharum bengalense as a non-conventional low cost biosorbent: Isotherm and thermodynamics modeling. International Journal of Phytoremediation, 16(7-12), 889-908. https://doi.org/10.1080/15226514.2013.803025.
Ding, Y., Hao, R.-X., Xu, X.-Y., Lu, A.-H., & Xu, H. (2019). Improving immobilization of Pb(II) ions by Aspergillus niger cooperated with photoelectron by anatase under visible light irradiation. Geomicrobiology Journal, 36(7), 591-599. https://doi.org/10.1080/01490451.2019.1594464.
Fomina, M., Alexander, I. J., Hillier, S., & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiology Journal, 21(5), 351-366. https://doi.org/10.1080/01490450490462066.
Gao, J., Sun, S. P., Zhu, W. P., & Chung, T. S. (2014). Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 63, 252-261. https://doi.org/10.1016/j.watres.2014.06.006.
Georgescu, A. A., Eliescu, A., Nicolescu, C. M., Bumbac, M., Cioateră, N., Mureșeanu, M., & Buruleanu, L. C. (2019). Performance of Pleurotus ostreatus mushrooms and spent substrate for the biosorption of Cd(II) From aqueous solution. Analytical Letters, 52(13), 2007-2027. https://doi.org/10.1080/00032719.2019.1590380.
Hassan, A. M., Wan Ibrahim, W. A., Bakar, M. B., Sanagi, M. M., Sutirman, Z. A., Nodeh, H. R., & Mokhter, M. A. (2020). New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. Journal of Environmental Management, 253, 109658. https://doi.org/10.1016/j.jenvman.2019.109658.
Iskandar, N. L., Zainudin, N. A. I. M., & Tan, S. G. (2011). Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. Journal of Environmental Sciences, 23(5), 824-830. https://doi.org/10.1016/s1001-0742(10)60475-5.
Jang, S. H., Min, B. G., Jeong, Y. G., Lyoo, W. S., & Lee, S. C. (2008). Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials, 152(3), 1285-1292. https://doi.org/10.1016/j.jhazmat.2007.08.003.
Jiang, Y., Hao, R., & Yang, S. (2016). Equilibrium and kinetic studies on biosorption of Pb(II) by common edible macrofungi: A comparative study. Canadian Journal of Microbiology, 62(4), 329-337. https://doi.org/10.1139/cjm-2015-0631.
Kapoor, A., & Viraraghavan, T. (1998). Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technology, 63(2), 109-113. https://doi.org/10.1016/s0960-8524(97)00118-1.
Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr(VI) onto marine Aspergillus niger: Experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25(8), 1413-1421. https://doi.org/10.1007/s11274-009-0028-0.
Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (II), Zinc (II) and Mercury (II) by four kinds of immobilized fungi residues. Ecotoxicology and Environmental Safety, 147, 357-366. https://doi.org/10.1016/j.ecoenv.2017.08.058.
Majumdar, S. S., Das, S. K., Chakravarty, R., Saha, T., Bandyopadhyay, T. S., & Guha, A. K. (2010). A study on lead adsorption by Mucor rouxii biomass. Desalination, 251(1-3), 96-102. https://doi.org/10.1016/j.desal.2009.09.137.
Pang, F. M., Kumar, P., Teng, T. T., Mohd Omar, A. K., & Wasewar, K. L. (2011). Removal of lead, zinc and iron by coagulation-flocculation. Journal of the Taiwan Institute of Chemical Engineers, 42(5), 809-815. https://doi.org/10.1016/j.jtice.2011.01.009.
Pillai, S. S., Deepa, B., Abraham, E., Girija, N., Geetha, P., Jacob, L., & Koshy, M. (2013). Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 98, 352-360. https://doi.org/10.1016/j.ecoenv.2013.09.003.
Powell, K. A. R., Renwick, A., & Peberdy, J. F.(1994). The genus Aspergillus: From taxonomy and genetics to industrial application. Plenum Press.
Prasad, A. (2013). Biosorption of lead by Pleurotus florida and Trichoderma viride. British Biotechnology Journal, 3(1), 66-78. https://doi.org/10.9734/bbj/2013/2348.
Qian, X., Fang, C., Huang, M., & Achal, V. (2017). Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. Journal of Cleaner Production, 164, 198-208. https://doi.org/10.1016/j.jclepro.2017.06.195.
Sarı, A., Tuzen, M., Uluözlü, Ö. D., & Soylak, M. (2007). Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochemical Engineering Journal, 37(2), 151-158. https://doi.org/10.1016/j.bej.2007.04.007.
Shah, F., Kazi, T. G., Afridi, H. I., Khan, S., Kolachi, N. F., Arain, M. B., & Baig, J. A. (2011). The influence of environmental exposure on lead concentrations in scalp hair of children in Pakistan. Ecotoxicology and Environmental Safety, 74(4), 727-732. https://doi.org/10.1016/j.ecoenv.2010.10.036.
Sun, F., & Shao, Z. (2007). Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles, 11(6), 853-858. https://doi.org/10.1007/s00792-007-0097-7.
Tan, I. A., Ahmad, A. L., & Hameed, B. H. (2009). Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. Journal of Hazardous Materials, 164(2-3), 473-482. https://doi.org/10.1016/j.jhazmat.2008.08.025.
Uluozlu, O. D., Sari, A., Tuzen, M., & Soylak, M. (2008). Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technology, 99(8), 2972-2980. https://doi.org/10.1016/j.biortech.2007.06.052.
Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235-250. https://doi.org/10.1021/bp00033a001.
Wang, N., Qiu, Y., Xiao, T., Wang, J., Chen, Y., Xu, X., Kang, Z., Fan, L., & Yu, H. (2019). Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. Journal of Hazardous Materials, 373, 39-49. https://doi.org/10.1016/j.jhazmat.2019.03.056.
Xu, H., Hao, R.-X., Xu, X.-Y., Ding, Y., Lu, A.-H., & Li, Y.-H. (2020). Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation. Geomicrobiology Journal, 1-9. https://doi.org/10.1080/01490451.2020.1807659 [Epub ahead of print].
Xu, X.-Y., Hao, R.-X., Wang, M.-C., Ding, Y., & Lu, A.-H. (2019). Effect of external electric current on adsorption of lead by Penicillium polonicum. Geomicrobiology Journal, 36(8), 737-746. https://doi.org/10.1080/01490451.2019.1613458.
Yahaghi, Z., Shirvani, M., Nourbakhsh, F., de la Pena, T. C., Pueyo, J. J., & Talebi, M. (2018). Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. Journal of MIicrobiology and Biotechnology, 28(7), 1156-1167. https://doi.org/10.4014/jmb.1712.12038.
Grant Information:
2014CB846003 National Basic Research Program of China; 41672332 National Natural Science Foundation of China; 2019YFC1805901 National Key Research and Development Project of China
Contributed Indexing:
Keywords: Aspergillus niger; lead ion; living biomass; modified biomass; removal
Substance Nomenclature:
0 (Ions)
0 (Water Pollutants, Chemical)
059QF0KO0R (Water)
2P299V784P (Lead)
Entry Date(s):
Date Created: 20201101 Date Completed: 20210610 Latest Revision: 20210610
Update Code:
20240105
DOI:
10.1002/wer.1472
PMID:
33131118
Czasopismo naukowe
An indigenous lead-tolerant fungal strain was isolated from lead-contaminated soil and identified as Aspergillus niger, via 18S rRNA gene sequencing. We determined the adsorption and accumulation of Pb(II) by living A. niger and the adsorption of Pb(II) via modified A. niger. This strain resisted and removed 96.21%-100% Pb(II) ranging from 2 to 8 mmol/L Pb(II). Pb-containing particles were observed outside of the cell, and lead was detected inside the cell under scanning electron microscopy and transmission electron microscopy. The process of measuring the adsorption ability of modified fungal biomass, freeze-dried, high-temperature, and alkali-treated fungal samples was analyzed; they adsorbed 25.02%, 8.76%, and 15.05% Pb(II) under 8 mmol/L Pb(II) in 43, 10, and 10 hr, respectively. These three types of modified A. niger fit the pseudo-second-order model equation well. PRACTITIONER POINTS: Isolation and identification of effective Pb(II) removal strain from the soil around Dexing lead-zinc mine. The ability of living and modified Aspergillus niger to remove Pb(II) in an aqueous environment was evaluated. Lead distributions inside and outside the cell were analyzed by SEM and TEM. Kinetic models for modified biomass adsorbing Pb(II) were made for describing adsorption process.
(© 2020 Water Environment Federation.)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies