Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus.

Tytuł:
Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus.
Autorzy:
Fisher JJ; School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
Vanderpeet CL; School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
Bartho LA; School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
McKeating DR; School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
Cuffe JSM; School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia.
Holland OJ; School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
Perkins AV; School of Medical Science, Griffith Health, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
Źródło:
The Journal of physiology [J Physiol] 2021 Feb; Vol. 599 (4), pp. 1291-1305. Date of Electronic Publication: 2020 Nov 15.
Typ publikacji:
Journal Article
Język:
English
Imprint Name(s):
Publication: Oxford : Blackwell : Cambridge Univ. Press
Original Publication: London, Cambridge Univ. Press.
MeSH Terms:
Diabetes Mellitus, Type 1*/metabolism
Diabetes Mellitus, Type 2*/metabolism
Diabetes, Gestational*/metabolism
Female ; Humans ; Mitochondria ; Placenta/metabolism ; Pregnancy ; Trophoblasts/metabolism
References:
Branisteanu DD & Mathieu C (2003). Progesterone in gestational diabetes mellitus: guilty or not guilty? Trends Endocrinol Metab 14, 54-56.
Burlina S, Dalfrà M, Chilelli N & Lapolla A. (2016). Gestational diabetes mellitus and future cardiovascular risk: an update. Int J Endocrinol 2070926.
Burton GJ, Sebire NJ, Myatt L, Tannetta D, Wang YL, Sadovsky Y, Staff AC & Redman CW (2014). Optimising sample collection for placental research. Placenta 35, 9-22.
Chatuphonprasert W, Jarukamjorn K & Ellinger I (2018). Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 9, 1027.
Cheong JN, Wlodek ME, Moritz KM & Cuffe JS (2016). Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations. J Physiol 594, 4727-4740.
Coughlan MT, Vervaart PP, Permezel M, Georgiou HM & Rice GE (2004). Altered Placental Oxidative Stress Status in Gestational Diabetes Mellitus. Placenta 25, 78-84.
Desoye G & Hauguel-de Mouzon S (2007). The human placenta in gestational diabetes mellitus: the insulin and cytokine network. Diabetes Care 30, S120-S126.
Desoye G, Korgun ET, Ghaffari-Tabrizi N & Hahn T (2002). Is fetal macrosomia in adequately controlled diabetic women the result of a placental defect?-a hypothesis. J Matern Fetal Neonatal Med 11, 258-261.
Eigentler A, Darxl A, Wiethüchter A, Kuznetsov A, Lassing B & Gnaiger E (2015). Laboratory Protocol: Citrate Synthase - A Mitochondrial Marker Enzyme. Mitochondr Physiol Network 17, 1-11.
Fisher J, McKeating D, Pennell E, Cuffe J, Holland O & Perkins A (2019a). Mitochondrial isolation, cryopreservation and preliminary biochemical characterisation from placental cytotrophoblast and syncytiotrophoblast. Placenta 82, 1-4.
Fisher JJ, Bartho LA, Perkins AV & Holland OJ (2019b). Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 47, 176-184.
Fisher JJ, McKeating, D.R, Bianco-Motto, T., Cuffe, J.S., Holland, O.J. & Perkins, A.V (2019c). Proteomic analysis of placental mitochondria following trophoblast differentiation. Front Physiol 10, 1536.
Flohe L & Gunzler WA (1984). Assays of glutathione peroxidase. Methods Enzymol 105, 114-121.
Gelaleti RB, Damasceno DC, Lima PHO, Salvadori DMF, Calderon IdMP, Peraçoli JC & Rudge MVC (2015). Oxidative DNA damage in diabetic and mild gestational hyperglycemic pregnant women. Diabetol Metab Syndr 7, 1.
Hastie R & Lappas M (2014). The effect of pre-existing maternal obesity and diabetes on placental mitochondrial content and electron transport chain activity. Placenta 35, 673-683.
Holland O, Dekker Nitert M, Gallo LA, Vejzovic M, Fisher JJ & Perkins AV (2017a). Review: Placental mitochondrial function and structure in gestational disorders. Placenta 54, 2-9.
Holland OJ, Cuffe JSM, Dekker Nitert M, Callaway L, Kwan Cheung KA, Radenkovic F & Perkins AV (2018). Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery. Cell Death Dis 9, 1150-1150.
Holland OJ, Hickey AJR, Alvsaker A, Moran S, Hedges C, Chamley LW & Perkins AV (2017b). Changes in mitochondrial respiration in the human placenta over gestation. Placenta 57, 102-112.
Kim HI & Ahn YH (2004). Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 53, S60-65.
Kolahi KS, Valent AM & Thornburg KL (2017). Cytotrophoblast, not syncytiotrophoblast, dominates glycolysis and oxidative phosphorylation in human term placenta. Sci Rep 7, 42941.
Kwak SH, Park KS, Lee K-U & Lee HK (2010). Mitochondrial metabolism and diabetes. J Diabetes Investig 1, 161-169.
Li H, Yin Q, Li N, Ouyang Z & Zhong M (2016). Plasma markers of oxidative stress in patients with gestational diabetes mellitus in the second and third trimester. Obstet Gynecol Int 2016, 8.
Mando C, Anelli GM, Novielli C, Panina-Bordignon P, Massari M, Mazzocco MI & Cetin I (2018). Impact of obesity and hyperglycemia on placental mitochondria. Oxid Med Cell Longev 2018, 2378189.
Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE & Shirihai OS (2009). Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58, 2303-2315.
Muralimanoharan S, Maloyan A & Myatt L (2016). Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143. Clin Sci 130, 931-941.
Napso T, Yong HEJ, Lopez-Tello J & Sferruzzi-Perri AN (2018). The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9, 1091.
Ngala RA, Fondjo LA, Gmagna P, Ghartey FN & Awe MA (2017). Placental peptides metabolism and maternal factors as predictors of risk of gestational diabetes in pregnant women. A case-control study. PLoS One 12, e0181613.
Picard F, Wanatabe M, Schoonjans K, Lydon J, O'Malley BW & Auwerx J (2002). Progesterone receptor knockout mice have an improved glucose homeostasis secondary to beta -cell proliferation. Proc Natl Acad Sci U S A 99, 15644-15648.
Plows JF, Stanley JL, Baker PN, Reynolds CM & Vickers MH (2018). The Pathophysiology of gestational diabetes mellitus. Int J Mol Sci 19, 3342.
Rueangdetnarong H, Sekararithi R, Jaiwongkam T, Kumfu S, Chattipakorn N, Tongsong T & Jatavan P (2018). Comparisons of the oxidative stress biomarkers levels in gestational diabetes mellitus (GDM) and non-GDM among Thai population: cohort study. Endocr Connect 7, 681-687.
Sferruzzi-Perri AN, Higgins JS, Vaughan OR, Murray AJ & Fowden AL (2019). Placental mitochondria adapt developmentally and in response to hypoxia to support fetal growth. Proc Natl Acad Sci 116, 1621.
Sivitz WI & Yorek MA (2010). Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12, 537-577.
Smith AD & Levander OA (2002). High-throughput 96-well microplate assays for determining specific activities of glutathione peroxidase and thioredoxin reductase. Methods Enzymol 347, 113-121.
Uzelac PS, Li X, Lin J, Neese LD, Lin L, Nakajima ST, Bohler H & Lei Z (2010). Dysregulation of leptin and testosterone production and their receptor expression in the human placenta with gestational diabetes mellitus. Placenta 31, 581-588.
Yu T, Robotham JL & Yoon Y (2006). Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103, 2653-2658.
Zhao X & Li W (2019). Gene coexpression network analysis identified potential biomarkers in gestational diabetes mellitus progression. Mol Genet Genomic Med 7, e00515.
Zorzano A, Hernández-Alvarez MI, Sebastián D & Muñoz JP (2015). Mitofusin 2 as a driver that controls energy metabolism and insulin signaling. Antioxid Redox Signal 22, 1020-1031.
Contributed Indexing:
Keywords: cytotrophoblast; gestational diabetes mellitus; mitochondrial dysfunction; mitochondrial isolation; placenta; syncytiotrophoblast
Entry Date(s):
Date Created: 20201102 Date Completed: 20210420 Latest Revision: 20210420
Update Code:
20240105
DOI:
10.1113/JP280593
PMID:
33135816
Czasopismo naukowe
Key Points: Mitochondrial dysfunction is known to occur in diabetic phenotypes including type 1 and 2 diabetes mellitus. The incidence of gestational diabetes mellitus (GDM) is increasing and defined as the onset of a diabetic phenotype during pregnancy. The role of placental mitochondria in the aetiology of GDM remains unclear and is an emerging area of research. Differing mitochondrial morphologies within the placenta may influence the pathogenesis of the disorder. This study observed mitochondrial dysfunction in GDM placenta when assessing whole tissue. Upon further investigation into mitochondrial isolates from the cytotrophoblast and syncytiotrophoblast, mitochondrial dysfunction appears exaggerated in syncytiotrophoblast. Assessing mitochondrial populations individually enabled the determination of differences between cell lineages of the placenta and established varying levels of mitochondrial dysfunction in GDM, in some instances establishing significance in pathways previously inconclusive or confounded when assessing whole tissue. This research lays the foundation for future work into mitochondrial dysfunction in the placenta and the role it may play in the aetiology of GDM.
Abstract: Mitochondrial dysfunction has been associated with diabetic phenotypes, yet the involvement of placental mitochondria in gestational diabetes mellitus (GDM) remains inconclusive. This is in part complicated by the different mitochondrial subpopulations present in the two major trophoblast cell lineages of the placenta. To better elucidate the role of mitochondria in this pathology, this study examined key aspects of mitochondrial function in placentas from healthy pregnancies and those complicated by GDM in both whole tissue and isolated mitochondria. Mitochondrial content, citrate synthase activity, reactive oxygen species production and gene expression regulating metabolic, hormonal and antioxidant control was examined in placental tissue, before examining functional differences between mitochondrial isolates from cytotrophoblast (Cyto-Mito) and syncytiotrophoblast (Syncytio-Mito). Our study observed evidence of mitochondrial dysfunction across multiple pathways when assessing whole placental tissue from GDM pregnancies compared with healthy controls. Furthermore, by examining isolated mitochondria from the cytotrophoblast and syncytiotrophoblast cell lineages of the placenta we established that although both mitochondrial populations were dysfunctional, they were differentially impacted. These data highlight the need to consider changes in mitochondrial subpopulations at the feto-maternal interface when studying pregnancy pathologies.
(© 2020 The Authors. The Journal of Physiology © 2020 The Physiological Society.)
Comment in: J Physiol. 2021 Feb;599(4):1019-1020. (PMID: 33337541)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies