Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Epigenetic conflict on a degenerating Y chromosome increases mutational burden in Drosophila males.

Tytuł:
Epigenetic conflict on a degenerating Y chromosome increases mutational burden in Drosophila males.
Autorzy:
Wei KH; Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
Gibilisco L; Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
Bachtrog D; Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .
Źródło:
Nature communications [Nat Commun] 2020 Nov 02; Vol. 11 (1), pp. 5537. Date of Electronic Publication: 2020 Nov 02.
Typ publikacji:
Journal Article; Research Support, N.I.H., Extramural
Język:
English
Imprint Name(s):
Original Publication: [London] : Nature Pub. Group
MeSH Terms:
Gene Silencing*
Transcription, Genetic*
DNA Transposable Elements/*genetics
Drosophila/*genetics
Y Chromosome/*metabolism
Animals ; Female ; Heterochromatin/metabolism ; Linear Models ; Male ; Models, Genetic ; Mutation ; Sex Factors ; Zygote
References:
Genes Dev. 1996 May 1;10(9):1131-42. (PMID: 8654928)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
Genome Biol. 2018 Nov 19;19(1):199. (PMID: 30454069)
Elife. 2019 Sep 16;8:. (PMID: 31524597)
Nat Commun. 2015 Jan 21;6:6033. (PMID: 25607992)
Development. 1998 Jun;125(12):2223-34. (PMID: 9584122)
Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. (PMID: 29235574)
Mob DNA. 2018 Jun 19;9:20. (PMID: 29946370)
Mob DNA. 2020 Feb 4;11:8. (PMID: 32042316)
Methods Mol Biol. 2012;859:29-51. (PMID: 22367864)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
Cell. 1982 Oct;30(3):687-96. (PMID: 7139712)
Nat Rev Genet. 2013 Feb;14(2):113-24. (PMID: 23329112)
PLoS Comput Biol. 2013;9(8):e1003118. (PMID: 23950696)
Nat Commun. 2020 Nov 2;11(1):5537. (PMID: 33139741)
Bioinformatics. 2014 Apr 1;30(7):923-30. (PMID: 24227677)
Adv Genet. 2008;61:1-43. (PMID: 18282501)
Cold Spring Harb Perspect Biol. 2013 Aug 01;5(8):a017780. (PMID: 23906716)
Nature. 2017 Jul 13;547(7662):241-245. (PMID: 28636597)
Mol Cell Biol. 2000 Sep;20(17):6308-16. (PMID: 10938107)
Nat Ecol Evol. 2020 Jun;4(6):853-862. (PMID: 32313175)
Nat Ecol Evol. 2019 Nov;3(11):1587-1597. (PMID: 31666742)
Genetics. 1935 Jul;20(4):377-91. (PMID: 17246767)
Cell. 1982 Oct;30(3):675-86. (PMID: 6183003)
Curr Opin Genet Dev. 2015 Apr;31:12-9. (PMID: 25917896)
Mutat Res. 2007 Mar 1;616(1-2):46-59. (PMID: 17157332)
Cell. 2007 Oct 5;131(1):174-87. (PMID: 17923096)
PLoS Genet. 2015 Jun 04;11(6):e1005269. (PMID: 26042931)
Mol Gen Genet. 1991 Oct;229(2):316-8. (PMID: 1921980)
BMC Bioinformatics. 2015 Mar 05;16:72. (PMID: 25887332)
Proc Natl Acad Sci U S A. 1944 Dec 15;30(12):384-7. (PMID: 16588671)
Genetics. 1986 Feb;112(2):359-83. (PMID: 3000868)
PLoS Biol. 2018 Jul 30;16(7):e2006348. (PMID: 30059545)
Mol Biol Evol. 2020 Oct 1;37(10):2808-2824. (PMID: 32211857)
PLoS Genet. 2014 Feb 13;10(2):e1004159. (PMID: 24550743)
PLoS Genet. 2021 Apr 22;17(4):e1009438. (PMID: 33886541)
Elife. 2017 Jul 25;6:. (PMID: 28742021)
Elife. 2014 Oct 14;3:. (PMID: 25313869)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Nature. 2002 Mar 21;416(6878):323-6. (PMID: 11907578)
Bioessays. 2016 Nov;38(11):1158-1166. (PMID: 27604404)
Genes Dev. 2016 Mar 1;30(5):579-93. (PMID: 26915820)
Grant Information:
R01 GM076007 United States GM NIGMS NIH HHS; R01 GM101255 United States GM NIGMS NIH HHS; R56 AG057029 United States AG NIA NIH HHS
Substance Nomenclature:
0 (DNA Transposable Elements)
0 (Heterochromatin)
Entry Date(s):
Date Created: 20201103 Date Completed: 20201120 Latest Revision: 20240330
Update Code:
20240330
PubMed Central ID:
PMC7608633
DOI:
10.1038/s41467-020-19134-9
PMID:
33139741
Czasopismo naukowe
Large portions of eukaryotic genomes consist of transposable elements (TEs), and the establishment of transcription-repressing heterochromatin during early development safeguards genome integrity in Drosophila. Repeat-rich Y chromosomes can act as reservoirs for TEs ('toxic' Y effect), and incomplete epigenomic defenses during early development can lead to deleterious TE mobilization. Here, we contrast the dynamics of early TE activation in two Drosophila species with vastly different Y chromosomes of different ages. Zygotic TE expression is elevated in male embryos relative to females in both species, mostly due to expression of Y-linked TEs. Interestingly, male-biased TE expression diminishes across development in D. pseudoobscura, but remains elevated in D. miranda, the species with the younger and larger Y chromosome. The repeat-rich Y of D. miranda still contains many actively transcribed genes, which compromise the formation of silencing heterochromatin. Elevated TE expression results in more de novo insertions of repeats in males compared to females. This lends support to the idea that the 'toxic' Y chromosome can create a mutational burden in males when genome-wide defense mechanisms are compromised, and suggests a previously unappreciated epigenetic conflict on evolving Y chromosomes between transcription of essential genes and silencing of selfish DNA.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies