Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hippocampal neurons with stable excitatory connectivity become part of neuronal representations.

Tytuł:
Hippocampal neurons with stable excitatory connectivity become part of neuronal representations.
Autorzy:
Castello-Waldow TP; Max Planck Institute of Psychiatry, Munich, Germany.
Weston G; Max Planck Institute of Psychiatry, Munich, Germany.; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität, Munich, Germany.
Ulivi AF; Max Planck Institute of Psychiatry, Munich, Germany.
Chenani A; Max Planck Institute of Psychiatry, Munich, Germany.
Loewenstein Y; The Hebrew University, Jerusalem, Israel.
Chen A; Max Planck Institute of Psychiatry, Munich, Germany.; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität, Munich, Germany.; Weizmann Institute of Science, Rehovot, Israel.
Attardo A; Max Planck Institute of Psychiatry, Munich, Germany.; Graduate School of Systemic Neurosciences Ludwig-Maximilians-Universität, Munich, Germany.
Źródło:
PLoS biology [PLoS Biol] 2020 Nov 03; Vol. 18 (11), pp. e3000928. Date of Electronic Publication: 2020 Nov 03 (Print Publication: 2020).
Typ publikacji:
Journal Article; Research Support, Non-U.S. Gov't
Język:
English
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, [2003]-
MeSH Terms:
CA1 Region, Hippocampal/*physiology
Memory/*physiology
Pyramidal Cells/*physiology
Animals ; CA1 Region, Hippocampal/cytology ; Conditioning, Psychological ; Cytoskeletal Proteins/genetics ; Cytoskeletal Proteins/physiology ; Dendritic Spines/physiology ; Fear/physiology ; Female ; Genes, Immediate-Early ; Green Fluorescent Proteins/genetics ; Male ; Mental Recall/physiology ; Mice ; Mice, Transgenic ; Models, Neurological ; Models, Psychological ; Nerve Tissue Proteins/genetics ; Nerve Tissue Proteins/physiology ; Neuronal Plasticity/physiology ; Promoter Regions, Genetic
References:
Neuron. 2019 Jan 16;101(2):274-284.e5. (PMID: 30551997)
Neuron. 2015 Sep 2;87(5):918-31. (PMID: 26335640)
Neuron. 2004 Apr 22;42(2):283-95. (PMID: 15091343)
Science. 2013 Jul 26;341(6144):387-91. (PMID: 23888038)
Science. 2007 Apr 20;316(5823):457-60. (PMID: 17446403)
Nature. 2016 Sep 15;537(7620):357-362. (PMID: 27602521)
Neuron. 2004 Sep 30;44(1):109-20. (PMID: 15450164)
J Neurosci. 2008 Jan 30;28(5):1030-3. (PMID: 18234881)
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19462-7. (PMID: 23132944)
Nat Commun. 2018 Jan 29;9(1):422. (PMID: 29379017)
Curr Opin Neurobiol. 2007 Oct;17(5):567-71. (PMID: 18036810)
Science. 2009 Mar 13;323(5920):1492-6. (PMID: 19286560)
Nat Neurosci. 2016 Oct;19(10):1348-55. (PMID: 27595384)
Science. 2017 Sep 8;357(6355):1033-1036. (PMID: 28883072)
J Neurosci. 2007 Dec 12;27(50):13909-18. (PMID: 18077703)
Neuron. 2006 Apr 20;50(2):291-307. (PMID: 16630839)
J Neurosci. 1989 Aug;9(8):2982-97. (PMID: 2769375)
Elife. 2015 Dec 18;4:. (PMID: 26682652)
PLoS One. 2016 Aug 31;11(8):e0161655. (PMID: 27579481)
Neuron. 2016 Aug 3;91(3):652-65. (PMID: 27397517)
Nature. 2016 May 23;534(7605):115-8. (PMID: 27251287)
Science. 2011 Dec 9;334(6061):1415-20. (PMID: 22052975)
J Vis Exp. 2019 Jun 19;(148):. (PMID: 31282875)
Neuron. 2017 Oct 11;96(2):490-504.e5. (PMID: 29024668)
Elife. 2016 Sep 23;5:. (PMID: 27661450)
Science. 2014 Feb 21;343(6173):896-901. (PMID: 24457215)
Cold Spring Harb Perspect Biol. 2015 Dec 18;8(3):a021832. (PMID: 26684182)
Curr Opin Neurobiol. 2018 Dec;53:76-82. (PMID: 29936406)
Nat Neurosci. 2019 May;22(5):753-761. (PMID: 30936555)
Science. 2020 Jan 3;367(6473):. (PMID: 31896692)
Nat Neurosci. 2006 Apr;9(4):475-7. (PMID: 16520736)
Science. 2016 Jan 8;351(6269):aaa5694. (PMID: 26744409)
Nature. 2012 Mar 22;484(7394):381-5. (PMID: 22441246)
Nature. 2009 Dec 17;462(7275):915-9. (PMID: 19946267)
Neuron. 2014 Oct 22;84(2):432-41. (PMID: 25308330)
Learn Mem. 2005 May-Jun;12(3):239-47. (PMID: 15930502)
Neuron. 2002 Apr 11;34(2):275-88. (PMID: 11970869)
Nat Rev Neurosci. 2014 Mar;15(3):157-69. (PMID: 24496410)
Curr Opin Neurobiol. 2005 Oct;15(5):599-606. (PMID: 16150584)
Nat Neurosci. 2000 Mar;3(3):238-44. (PMID: 10700255)
Neural Plast. 2015;2015:650780. (PMID: 26380117)
Nat Neurosci. 2009 Nov;12(11):1438-43. (PMID: 19783993)
Nat Neurosci. 2013 Mar;16(3):264-6. (PMID: 23396101)
Science. 2007 Aug 31;317(5842):1230-3. (PMID: 17761885)
Cereb Cortex. 2009 Nov;19(11):2572-8. (PMID: 19240139)
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12673-5. (PMID: 7809099)
Nature. 2015 Sep 17;525(7569):333-8. (PMID: 26352471)
Cereb Cortex. 2012 Jul;22(7):1473-86. (PMID: 21880656)
Cell Rep. 2018 Oct 16;25(3):640-650.e2. (PMID: 30332644)
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14599-604. (PMID: 19706547)
Neuron. 2014 Jul 2;83(1):189-201. (PMID: 24991962)
Nat Neurosci. 2017 Oct 26;20(11):1434-1447. (PMID: 29073641)
Cell. 2018 Jan 11;172(1-2):275-288.e18. (PMID: 29328916)
Science. 2018 Apr 27;360(6387):430-435. (PMID: 29700265)
J Neurosci. 2014 Oct 15;34(42):13948-53. (PMID: 25319691)
Nature. 2008 Mar 27;452(7186):436-41. (PMID: 18368112)
Nature. 2009 Dec 17;462(7275):920-4. (PMID: 19946265)
Nature. 2015 Jul 30;523(7562):592-6. (PMID: 26098371)
Cereb Cortex. 2014 Feb;24(2):377-84. (PMID: 23081882)
Science. 2014 Feb 21;343(6173):857-63. (PMID: 24558155)
Nat Rev Neurosci. 2015 Sep;16(9):521-34. (PMID: 26289572)
Elife. 2018 Jun 22;7:. (PMID: 29932052)
Neuron. 2000 Oct;28(1):41-51. (PMID: 11086982)
Neuron. 2015 Sep 23;87(6):1317-1331. (PMID: 26402611)
Neuron. 2013 Jun 5;78(5):773-84. (PMID: 23764283)
J Neurosci. 1993 Sep;13(9):3736-48. (PMID: 8366344)
Substance Nomenclature:
0 (Cytoskeletal Proteins)
0 (Nerve Tissue Proteins)
0 (activity regulated cytoskeletal-associated protein)
0 (enhanced green fluorescent protein)
147336-22-9 (Green Fluorescent Proteins)
Entry Date(s):
Date Created: 20201103 Date Completed: 20210104 Latest Revision: 20210104
Update Code:
20240105
PubMed Central ID:
PMC7665705
DOI:
10.1371/journal.pbio.3000928
PMID:
33141818
Czasopismo naukowe
Experiences are represented in the brain by patterns of neuronal activity. Ensembles of neurons representing experience undergo activity-dependent plasticity and are important for learning and recall. They are thus considered cellular engrams of memory. Yet, the cellular events that bias neurons to become part of a neuronal representation are largely unknown. In rodents, turnover of structural connectivity has been proposed to underlie the turnover of neuronal representations and also to be a cellular mechanism defining the time duration for which memories are stored in the hippocampus. If these hypotheses are true, structural dynamics of connectivity should be involved in the formation of neuronal representations and concurrently important for learning and recall. To tackle these questions, we used deep-brain 2-photon (2P) time-lapse imaging in transgenic mice in which neurons expressing the Immediate Early Gene (IEG) Arc (activity-regulated cytoskeleton-associated protein) could be permanently labeled during a specific time window. This enabled us to investigate the dynamics of excitatory synaptic connectivity-using dendritic spines as proxies-of hippocampal CA1 (cornu ammonis 1) pyramidal neurons (PNs) becoming part of neuronal representations exploiting Arc as an indicator of being part of neuronal representations. We discovered that neurons that will prospectively express Arc have slower turnover of synaptic connectivity, thus suggesting that synaptic stability prior to experience can bias neurons to become part of representations or possibly engrams. We also found a negative correlation between stability of structural synaptic connectivity and the ability to recall features of a hippocampal-dependent memory, which suggests that faster structural turnover in hippocampal CA1 might be functional for memory.
Competing Interests: The authors have declared that no competing interests exist.
Zaloguj się, aby uzyskać dostęp do pełnego tekstu.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies